A.D.M. COLLEGE FOR WOMEN (AUTONOMOUS) (Accredited With 'A' Grade By NAAC 3rd Cycle) (Affiliated to Bharathidasan University, Tiruchirappalli) NAGAPATTINAM – 611 001

PG AND RESEARCH DEPARTMENT OF PHYSICS

SYLLABUS M.Sc. PHYSICS (2021-2024 Batch)

PG DEPARTMENT OF PHYSICS

M.Sc., PHYSICS COURSE STRUCTURE UNDER CBCS

(2021-2023 Batch)

OBE ELEMENTS

Programme Educational Objectives (PEO):

PEO 1:	To impart knowledge in advanced concepts and applications indifferent fields of
	Physics.
PEO 2:	To prepare students enter in to professional courses.
PEO 3:	To educate students to occupy important positions in business houses, industries and
	organizations.
PEO 4:	To equip students with skills to excel in their future careers.
PEO 5:	To enable students to take up challenging jobs.

Programme Outcomes (PO):

On completion of the course the learner will be able

PO 1:	Students must be able to take important managerial decisions. Demonstrate relevant
	generic skills and global competencies at National and Global level.
PO 2:	Students would have acquired thorough knowledge in the field of problem-solving skills
	that are required to solve different types of Physics-related problems
PO 3:	With well - defined solutions, and tackle open-ended problems that belong to the
	disciplinary area.
PO 4:	Investigative skills, including skills of independent investigation of Physics-related
	issues and problems in Research areas.
PO 5:	Communication skills involving the ability to listen carefully, to read texts and research.

Programme Specific Outcomes (PSO):

On completion of the course the learner will be able

PSO 1:	Research-Acquire recent knowledge towards research
PSO 2:	Entrepreneurship and Employability
PSO 3:	Exploring problem solving
PSO 4:	Adopt new technology
PSO 5:	Projects and model design

M.Sc. PHYSICS 2021- 2023 Batch

STRUCTURE OF THE PROGRAMME

Course	No. of Papers	Hours	Credit
Core Course	14	89	61
Elective Course	5	25	25
Project	1	6	4
Total	20	120	90

M.Sc. PHYSICS 2021- 2023 Batch

SCHEME OF THE PROGRAMME

Sem.	Course	C	Ins.	C 1!4	Exam	Ma	rks	Total
	Code	Course	Hrs	Crean	Hours	CIA	SE	Marks
	PGPA Core Course – I(CC)		6	4	2	25	75	100
		Mathematical Physics	0	4	5	23	15	100
	PGPB	Core Course– II(CC)	6	4	2	25	75	100
		Classical Dynamics and Relativity	0	4	5	23	15	100
	PGPC	Core Course–III(CC)	5	1	3	25	75	100
Ι		Electronics	5	-	5	23	15	100
	PGPD	Core Course– IV (CC)	5	1	3	25	75	100
		Methods of Spectroscopy	5	-	5	25	15	100
	PGPE	Core Practical – I (CP)						
		Physics Practical – I (General and	8	Δ	3	40	60	100
		Electronics)	0		5	10	00	100
		TOTAL	30	20	-	-	-	500
	PGPF	Core Course– V(CC)	6	5	3	25	75	100
		Electromagnetic Theory	0			25	10	100
	PGPG	Core Course– VI(CC)	6	5	3	25	75	100
		Quantum Mechanics	0	5	5	20	10	100
		Core Practical – II(CP)						
П	PGPHY	Physics Practical – III	8	4	3	40	60	100
		(General and Electronics)	Ũ				0	
	PGPE1	Elective Course – I(EC)						
		-Microprocessor and Microcontroller/	5	5	3	25	75	100
		Data Communication and Computer	C .	0	C .		, e	100
		Networks						
	PGPE2	Elective Course – II (EC)Numerical						
		Methods and C++ Programming/	5	5	3	25	75	100
		Computer Organizations						
		TOTAL	30	24	-	-	-	500

	PGPI	Core Course– VII(CC)						
III		Statistical Mechanics	6	5	3	25	75	100
	PGPJ	Core Course–VIII (CC)						
		Solid State Physics	6	5	3	25	75	100
	PGPKY	Core Practical – III (CP)						
		Physics Practical – III (Microprocessor	8	4	3	40	60	100
		and Programming)						
	PGPE3	Elective Course –III (EC)						
		Nano Materials and Applications/	5	5	3	25	75	100
		Crystal Physics						
	PGPE4	Elective Course – IV (EC)Communication Physics/ Laser and	5	5	3	25	75	100
		Fiber Optics						
		TOTAL	30	24	-	-	-	500
	PGPL	Core Course –IX(CC)						
		Nuclear and Particle Physics	6	5	3	25	75	100
	PGPM	Core Course– X(CC) - Advanced Physics						
			6	4	3	25	75	100
IV	PGPNY	Core Practical – IV (CP)Physics	7	4	3	40	60	100
	DODEZ	Flactical – IV (Electronics)						
	PGPE5	Elective Course $- v$ (EC) - Advanced						
		Experimental Techniques/ Basic	5	5	3	25	75	100
		Computational Nano Electronics						
	PGPP	Project	6	4	-	-	-	100
		Extra Credit Course - SWAYAM /	-	2	-	_	_	-
		МООС						
		TOTAL	30	24	-	-	-	500
		GRANDTOTAL	120	92				2000

MSc – EXTRA CREDIT COURSE

Year	SEM	Title of the Paper	Credit
Ι	II	Swayam / MOOC	2
III	IV	Internship Training	2

Semester-I/	MATHEMATICAL PHYSICS	Course Code: PGPA
Core Course I		
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember						
Level	K-2 Understand						
	K-3 Apply	K-3 Apply					
	K-4 Analyze	-4 Analyze					
	K-5 Evaluate	K-5 Evaluate					
	K-6 Create						
Course	To learn various mathematical concepts and techniques in vector space, groups						
Objectives	and functions of special types to solve physical problems.						
	• Revise the knowledge of calculus, vectors, vector calculus, proba	bility and					
	probability distributions.						
	• Learn the basic properties of gamma, beta function and differential equ	ation					
	• Describe the basic ideas about cauchy's integral theorem and	d integral					
	formulation						
	• Quantitative understanding of group theory, classes, cosets sub groups.						
UNIT	CONTENT	HOURS					
Ι	VECTOR ANALYSIS	18					
	Concept of vector and scalar fields - Gradient, divergence, curl and						
	Laplacian - Vector identities - Line integral, surface integral and						
	volume integral - Gauss theorem, Green's theorem, Stoke's theorem						
	and their applications – Definitions in linear independence of vectors.						
II	MATRIX THEORY AND TENSORS	18					
	Matrix Theory: Characteristic equation of a matrix Figen values and	-					
	Wattix Theory: Characteristic equation of a matrix – Eigen values and						
	eigenvectors -Cayley-Hamilton theorem -Reduction of a matrix to						
	eigenvectors –Cayley–Hamilton theorem -Reduction of a matrix to diagonal form – Jacobi method.						
	eigenvectors –Cayley–Hamilton theorem -Reduction of a matrix to diagonal form – Jacobi method. Tensors : Contra variant, covariant and mixed tensors – Rank of a tensor						

	Quotient law						
III	 GROUP THEORY Basic definitions – Multiplication table – Subgroups, cosets and classes – Point and space groups – Homomorphism and isomorphism – Reducible and irreducible representations – Schur's lemma The great orthogonality theorem (qualitative treatment without proof) – Formation of character table of C2v and C3v. 						
IV	 COMPLEX ANALYSIS Cauchy-Riemann conditions – Complex integration – Cauchy's integral theorem and integral formula – Taylor's and Laurent's series – Residues and singularities – Cauchy's residue theorem-Computation of residues- Evaluation of definite integrals using residues. 						
V	SPECIAL FUNCTIONS Basic properties of gamma and beta functions Legendre, Bessel, Laugerre and Hermite differential equation: Series solution, generating function, recurrence relations and orthogonality relations.	18					
VI	 Green's function, partial differential equations, elements of computational techniques Simpson's rule, solution of the first-order differential equation using the Runge-Kutta method. Finite difference methods, tensors, introductory group theories. Taylor's and Laurent's series – Poles. Tensors: Introductory group theory SU(2), O(3). 	Group Discussion					

1. B.D. Gupta, Mathematical Physics (Vikas Pub., Noida, 2015) 4th edition.

Reference Books:

1. A.W. Joshi, Matrices and Tensors in Physics (New Age, New Delhi, 2006).

2. H.K. Dass and Rama Verma, Mathematical Physics (S. Chand, New Delhi ,2008).

3. Sathyaprakash, Mathematical Physics.e Resources:

Course Outcome:

- CO 1: To learn various mathematical concepts and techniques in vector space, groups and functions of special types to solve physical problems.
- CO 2: Revise the knowledge of calculus, vectors, vector calculus, probability and probability distributions.
- CO 3: Learn the basic properties of gamma, beta function and differential equation
- CO 4: Describe the basic ideas about cauchy's integral theorem and integral formulation
- CO 5: Quantitative understanding of group theory, classes, cosets sub groups.

CO/PO	РО						PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	М	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

Semester-I /	CLASSICAL DYNAMICS AND	Course Code- PGPB
Core Course-II	RELATIVITY	
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember						
Level	K-2 Understand						
	K-3 Apply						
	K-4 Analyze						
	K-5 Evaluate						
	K-6 Create						
Course	• To develop an understanding of lagrangian and Hamiltonian formulat	tion which					
Objectives	allow for simplified treatments of many problems.						
	• To know what central conservative forces mathematically, under	rstand the					
	conservative theorems of angular momentum.						
	• Using vector and matrix methods to develop the basic principles of rigi	d bodies –					
	Euler's equation.						
	• To establish the Kepler's law are just consequence Newton's law of gravitation						
	and that of motion.						
	• To understand the basic ideas of vectors, energy Newtonian relativity \						
	• To understand the basic fideas of vectors, energy, newtointail relativity.						
UNIT	CONTENT	HOURS					
UNIT I	CONTENT FUNDAMENTAL PRINCIPLES AND LAGRANGIAN	HOURS 18					
UNIT I	CONTENT FUNDAMENTAL PRINCIPLES AND LAGRANGIAN FORMULATION	HOURS 18					
UNIT I	FUNDAMENTAL PRINCIPLES AND LAGRANGIAN FORMULATION Mechanics of a particle and a system of particles – Conservation laws –	HOURS 18					
UNIT I	CONTENT FUNDAMENTAL PRINCIPLES AND LAGRANGIAN FORMULATION Mechanics of a particle and a system of particles – Conservation laws – Constraints Generalized coordinates D'Alembert's principle and	HOURS 18					
UNIT	CONTENT FUNDAMENTAL PRINCIPLES AND LAGRANGIAN FORMULATION Mechanics of a particle and a system of particles – Conservation laws – Constraints –Generalized coordinates – D'Alembert's principle and	HOURS 18					
UNIT	FUNDAMENTAL PRINCIPLES AND LAGRANGIAN FORMULATION Mechanics of a particle and a system of particles – Conservation laws – Constraints –Generalized coordinates – D'Alembert's principle and Lagrange's equation –Hamilton's principle – Lagrange's equations of	HOURS 18					
UNIT	CONTENT FUNDAMENTAL PRINCIPLES AND LAGRANGIAN FORMULATION Mechanics of a particle and a system of particles – Conservation laws – Constraints –Generalized coordinates – D'Alembert's principle and Lagrange's equation –Hamilton's principle – Lagrange's equations of motion – Conservation theorems and symmetry properties – Applications	HOURS 18					
UNIT	CONTENT FUNDAMENTAL PRINCIPLES AND LAGRANGIAN FORMULATION Mechanics of a particle and a system of particles – Conservation laws – Constraints -Generalized coordinates – D'Alembert's principle and Lagrange's equation –Hamilton's principle – Lagrange's equations of motion – Conservation theorems and symmetry properties – Applications to linear harmonic oscillator, pendulum, compound pendulum, charged	HOURS 18					
UNIT	CONTENT FUNDAMENTAL PRINCIPLES AND LAGRANGIAN FORMULATION Mechanics of a particle and a system of particles – Conservation laws – Constraints –Generalized coordinates – D'Alembert's principle and Lagrange's equation –Hamilton's principle – Lagrange's equations of motion – Conservation theorems and symmetry properties – Applications to linear harmonic oscillator, pendulum, compound pendulum, charged particles in an electromagnetic field and Atwood's machine.	HOURS 18					
UNIT	CONTENT FUNDAMENTAL PRINCIPLES AND LAGRANGIAN FORMULATION Mechanics of a particle and a system of particles – Conservation laws – Constraints –Generalized coordinates – D'Alembert's principle and Lagrange's equation –Hamilton's principle – Lagrange's equations of motion – Conservation theorems and symmetry properties – Applications to linear harmonic oscillator, pendulum, compound pendulum, charged particles in an electromagnetic field and Atwood's machine.	HOURS 18					
UNIT I I	CONTENT FUNDAMENTAL PRINCIPLES AND LAGRANGIAN FORMULATION Mechanics of a particle and a system of particles – Conservation laws – Constraints –Generalized coordinates – D'Alembert's principle and Lagrange's equation –Hamilton's principle – Lagrange's equations of motion – Conservation theorems and symmetry properties – Applications to linear harmonic oscillator, pendulum, compound pendulum, charged particles in an electromagnetic field and Atwood's machine. MOTION UNDER CENTRAL FORCE	HOURS 18					
UNIT I II	CONTENT FUNDAMENTAL PRINCIPLES AND LAGRANGIAN FORMULATION Mechanics of a particle and a system of particles – Conservation laws – Constraints –Generalized coordinates – D'Alembert's principle and Lagrange's equation –Hamilton's principle – Lagrange's equations of motion – Conservation theorems and symmetry properties – Applications to linear harmonic oscillator, pendulum, compound pendulum, charged particles in an electromagnetic field and Atwood's machine. MOTION UNDER CENTRAL FORCE Conservation of energy and angular momentum – Inverse square law –	HOURS 18 18					

III	 Kepler's problem – Vitriol theorem – Scattering in a central force field – Artificial satellites – Geo stationary satellites – Eccentricity of orbit of satellites – Escape velocity. RIGID BODY DYNAMICS AND OSCILLATORY MOTION Euler's 	18
	angles – Moments and products of inertia – Euler's equations – Symmetrical top – Theory of small oscillations – Normal modes and frequencies – Linear triatomic molecule – Wave equation and motion – Phase velocity – Group velocity Dispersion.	
IV	HAMILTON'S FORMULATION Hamilton's canonical equations of motion – Hamilton's equations from variational principle – Principle of least action – Canonical transformations – Poission bracket – HamiltonJacobi method – Action and angle variables – Kepler's problem in action angle variables – Applications of Hamilton's equations of motion to linear harmonic oscillator, pendulum, compound pendulum and charged particles in an electromagnetic field.	18
V	RELATIVISTIC MECHANICS Reviews of basic ideas of special relativity – Energy momentum four - vector –Minkowski's four-dimensional space – Newtonian relativity- Galileon transformation equations- Lorentz transformation as rotation in Minkowski's space – Composition of Lorentz transformation about two orthogonal directions – Thomas precession – Elements of general theory of relativity.	18
VI	 Dynamical systems, phase space dynamics, stability analysis Poisson brackets, and canonical transformations, symmetry, invariance and Noether's theorem Radiation from moving charge and dipoles and retarded potentials. 	Group Discussion

- 1. H. Goldstein, C.P. Poole and J.L. Safko, Classical Mechanics (Pearson Education and Dorling Kindersley, New Delhi, 2007).
- 2. S.L. Gupta, V. Kumar and H.V. Sharma, Classical Mechanics (Pragati Prakashan)

Reference Books:

- 1. V.B. Bhatia, Classical Mechanics (Narosa, New Delhi, 1997).
- 2. T.L. Chow, Classical Mechanics (John-Wiley, New York, 199

Web-Resources:

- 1. https://Physics. Stackexchange.com
- 2. https://www.world scientific.com
- 3. https://www.semantics scholar.org

Course Outcome:

CO 1: Have a deep understanding of Newton law.

CO 2: Apply to variation principle to real physical problems.

CO 3: Able to frame model in mechanical systems, both in inertial and rotating frames and Hamilton equation.

- CO 4: Identify the forces and torques occurring in a given problem.
- CO 5: To setup the equation of motion and solve the problems.

Mapping of COs with POs & PSOs:

CO/PO	РО				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	М	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	М	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

- S Strongly Correlating
- M Moderately Correlating
- W Weakly Correlating

Semester-I /	ELECTRONICS	Course Code PGPC
Core Course III		
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember						
Level	K-2 Understand						
	K-3 Apply						
	K-4 Analyze						
	K-5 Evaluate						
	K-6 Create						
Course	• This course is familiarize the students about the transistor, operational amp	lifier and					
Objectives	Digital electronics Circuit.						
	• Acquire the fundamental knowledge and application of the semiconductor	Device.					
	• Knowledge of the basic principles of electronic circuits operation.						
	• Fundamental of analog and digital integrated circuit.						
	• Design methodologies using practical integrated circuit and to understand the						
	operation of various basic circuit of MOSFET and analyze and design MOSFET						
	bias circuit.						
UNIT	CONTENT	HOURS					
Ι	SEMICONDUCTOR DEVICES	18					
	Varactor, Schottky, tunnel, Gunn, optoelectronic, LASER, LED and photo						
	diodes -Depletion and enhancement type MOSFFT- Characteristics of						
	UJT,UJT Relaxation Oscillator and SCR -SCR as a Switch- Power control						
	DIAC and TRIAC.						
	(Content- 12 Hrs, Assessment -3 Hrs) (15 Hrs)						
II	OPERATION AMPLIFIER	18					
	Wien bridge and phase-shift oscillators- Triangular, saw-tooth and square-						

III	loops Weighted resistor and binary R-2R ladder digital to analog converters Counter type and successive approximation analog to digital converters Solving simultaneous and differential equations.	18
	Digital comparator – Parity generator/checker – Data selector BCD to	10
	decimal decoder – Seven segment decoder – Encoders – RS, JK, D and JK master-slave flip-flops.	
IV	DIGITAL CIRCUITS-II	18
	Serial-in serial-out, serial-in parallel-out and parallel-in serial-out shift	
	registers – Synchronous, asynchronous, ring and up/down (using mod 10)	
	counters - Multiplexers(1-8) – Demultiplexers (8-1).	
V	FABRICATION AND IC TIMER	18
	Basic monolithic ICs – Epitaxial growth – Masking – Etching impurity	
	diffusion – Fabricating monolithic resistors, diodes, transistors, inductors and capacitors – Circuit layout – Contacts and inter connections – Charge	
	coupled device – Applications of CCDs - 555 timer: Description of the	
	functional diagram, applications of monostable and astable operations.	
VI	• Filtering and noise reduction	Practical
	• Shielding and grounding	
	• Fourier transforms, lock-in detector, box-car integrator, modulation	
	techniques, high-frequency devices.	
	Working of solar cell, LED	
	Working of Register, Counters and comparators	

- 1. T.F. Schubert, E.M. Kim, Active and Nonlinear Electronics (John Wiley, New York, 1996).
- 2. L. Floyd, Electronic Devices (Pearson Education, New York, 2004).

Reference Books:

- 1. R.L. Geiger, P.E. Allen and N.R Strader, VLSI Design Techniques for Analog and Digital Circuits (McGraw--Hill, Singapore, 1990).
- 2. D. Roy Choudhury and S.B. Jain, Linear Integrated Circuit (New Age International Publications, New Delhi, 2010).

Web-Resources:

- 1. https://www.Explainthatstuff.com
- 2. https://www.Physics and Radio-electronics.com
- 3. https://www.makers.space.com

Course Outcome:

CO 1: Explain the theoretical principles essential for understanding the operation of electronic circuit.

CO 2: Analyze electrical circuit and calculate the main parameters.

CO 3: Develop Design and create simple analogue and digital electronics circuit.

CO 4: Understand the fundamentals and area of application for the integrated circuit.

CO 5: Know about the multistage amplifier using BJT and FET various configuration

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	М
CO3	S	S	М	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	М	S	М	S	S

Mapping of COs with POs & PSOs:

S – Strongly Correlating

 $M-Moderately\ Correlating$

W-Weakly Correlating

Semester-I / Core Course IV	METHOD OF SPECTROSCOPY	Course Code PGPD
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember	
Level	K-2 Understand	
	K-3 Apply	
	K-4 Analyze	
	K-5 Evaluate	
	K-6 Create	
Course	• To applications in the determinations of atomic structure, chemical composi	tion and
Objectives	Physical properties of materials.	
	• To explain the absorption and emission spectra.	
	• To justify the difference in intensity between stokes and antistokes line.	
	• Explain NMR Spectroscopy knows how nuclear spins are affected by a magnet	tic field.
	To study Frank Condon principle.	
UNIT	CONTENT	HOURS
Т	ATOMIC SPECTROSCOPY	18
-		10
	Hyperfine structure – Zeeman and Paschen—Back effect of one and two electron	
	systems – Selection rules – Stark effect.	
	MICROWAVE AND INFRARED ABSORPTION SPECTROSCOPIES	
	MICROWAVE SPECTROSCOPY: Rotation of diatomic molecules -	
	Rotational spectra of polyatomic molecules – Spectrum of non rigid rotator –	
	Experimental technique – Polyatomic molecules – Linear symmetric top and	
	asymmetric top molecules.	
II	INFRARED ABSORPTION SPECTROSCOPY: Vibrating diatomic	18
	molecule – Anharmonic oscillator – Diatomic vibrating rotator – Vibration-	
	rotation spectrum of earbon monovide. Influence of rotation on the spectrum of	
	Totation spectrum of carbon monoxide – influence of totation on the spectrum of	
	polyatomic molecules – Linear and symmetric top molecules.	
III	RAMAN SPECTROSCOPY	18

1		1
	Quantum theory of Raman effect -Pure rotational Raman spectra - Linear	
	molecules - Symmetric top molecules - Vibration Raman spectra - Rotational	
	fine structure - Structural determination - Raman spectra - Instrumentation -	
	Raman effect and molecular structure – Raman activity of molecular vibrations.	
IV	NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY	18
	Basic principles –Quantum theory of NMR- Bloch equations and solutions –	10
	Shielding and deshielding affects Chamical shift Spin lattice and spin spin	
	Sinclung and desinclung effects – Chemical sint – Spin fattice and spin-spin	
	relaxation– Coupling constants – Experimental technique – Double coll method	
	- Structural diagnosis and hydrogen bonding.	
V	ELECTRONIC AND ESR SPECTROSCOPY	18
	ELECTRONIC SPECTROSCOPY OF MOLECULES: Electronic spectra of	
	diatomic molecules The Franck-Condon principle – Dissociation energy and	
	dissociation products – Rotational fine structure of electronic vibration	
	transitions.	
	ESR: Theory of ESR – Resonance conditions – Experimental study – ESR	
	spectrometer – Crystalline solids and free radicals in solution – Determination of	
	g factor.	
WI	• Infrared (ID) Spectroscopy	Project
V I	• Infrared (IK) Spectroscopy	TOJECI
	• Ultraviolet-Visible (UV/Vis) Spectroscopy	
	• Nuclear Magnetic Resonance (NMR) Spectroscopy	
	Raman Spectroscopy	
	• X-Ray Spectroscopy.	

- 1. Gupta kumar Sharma Elements of Spectroscopy -10th Edition
- 2. C.N. Banwell, Fundamentals of Molecular Spectroscopy (McGraw Hill, New York, 1981).

Reference Books:

- 1. J. Michael Hollas, Modern Spectroscopy (Wiley India, New Delhi, 2004).
- 2. B.P. Straughan and S. Walker, Spectroscopy Volumes I--III (Chapman and Hall, New York, 1976).

Web-Resources:

- 1. https://guides.lib.unc.edu/spectroscopy/general.
- 2. https://guides.lib.unc.edu/spectroscopy/general.
- ElectronMicroscopy-PrinciplesandFundamentals-S.Amenlinckx,etal.,(Wiley-VCH,1997) WW.pdf

Course Outcome:

CO 1: Explain what it means to use Spectroscopic methods for qualitative and quantitative analysis.

CO 2: Compare and contrast of atomic and molecular spectra.

CO 3: Explain the difference between stokes and anti-stokes line in a Raman spectrum.

CO 4: Understanding of Quantum theory and NMR spectroscopy.

CO 5: The probability of transition between vibration levels of two electronic states determined by Frank-Condon principle.

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	М	S	S	S
CO2	S	S	S	S	S	S	М	М	S	S
CO3	S	М	М	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	М	S	S	S	S	S	М	S

Mapping of COs with POs & PSOs:

S – Strongly Correlating

 $M-Moderately\ Correlating$

W - Weakly Correlating

Semester-I /	CORE PRACTICAL - I	Course Code: PGPE
Core Practical - I	PHYSICS PRACTICAL I (GENERAL)	
Instruction Hours: 8	Credits: 4	Exam Hours: 3
Internal Marks -40	External Marks-60	Total Marks: 100

Cognitive	K-1 Acquire/Remember
Level	K-2 Understand
	K-3 Apply
	K-4 Analyze
	K-5 Evaluate
	K-6 Create
Course	• Experimental determination of certain Physical constants and properties.
Objectives	• Verification of characteristics and applications of electronic components and devices.
	• Resolving power of optical equipment can be learnt firsthand.
	• In the laboratory course, the hands-on experience of using various optical
	instruments and making finer measurements of wavelength of light using Michelson
	interferometer, Fresnel Biprism etc.
	• Understand the phase shifter, Wein bridge oscillator, Saw tooth and Stair case waves
	generators using op-amp comparator.
1.	Determination of q, n, σ by elliptical fringes method
2.	Determination of q, n, σ by Hyperbolic fringes method
3.	Determination of Stefan's constant
4.	Determination of bulk modulus of a liquid by ultrasonic wave propagation
5.	Determination of Rydberg's constant
6.	Study of Hall effect in a semiconductor
7.	Michelson interferometer Determination of wavelength of monochromatic source.
8.	Determination of wavelength of monochromatic source using biprism
9.	Charge of an electron by spectrometer

10.	Photo electric Effect-determination of Planck's Constant.
11.	Determination of thermal conductivity of a good conductor – Forbe's method
12.	Band gap energy of a semiconductor Four-probe method
13.	Polarizability of liquids by finding the refractive indices at different wavelengths
14.	Magnetic susceptibility of a paramagnetic solution using Quincke's tube method
15.	Determination of magnetic susceptibility of liquid by Guoy method.
16.	Calibration of Thermistor.

Course Outcome:

CO 1: This programme could provide skilled in electronic principles

CO 2: Helps students to acquire conceptual knowledge on various kinds of Electronic devices.

CO 3: Learned about to basic concept of Hyperbolic fringes and elliptical fringes

CO 4: Develop and analysis of IC fabrication and Electronics measuring Instruments of CRO.

CO 5: To design the basic operational amplifier phase shifter, Wein bridge oscillator, Saw tooth and Stair case waves generators using op-amp comparator.

Mapping of COs with POs & PSOs

CO/PO	РО					PO PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	М	М	S	S	S
CO2	S	S	М	S	S	М	S	S	S	S
CO3	S	М	S	М	М	М	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

- S Strongly Correlating
- $M-Moderately\ Correlating$
- W Weakly Correlating
- N No Correlation

Semester-I/ CORE COURSE V	ELECTRO MAGNETIC THEORY	Course Code: PGPF
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember								
Level	K-2 Understand								
	K-3 Apply								
	K-4 Analyze								
	K-5 Evaluate								
	K-6 Create								
Course	• To learn the theory for the fields produced by stationary and moving cl	harge and							
Objectives	charged systems and propagation of electromagnetic fields.								
	• Achieve an understanding of the Maxwell's equations, role of displacement	nt current,							
	gauge transformations, scalar and vector potentials, Coulomb and Lorer	ntz gauge,							
	boundary conditions at the interface between different media.								
	• Apply Maxwell's equations to deduce wave equation, electromagnetic field energy,								
	momentum and angular momentum density.								
	• Analyze the phenomena of wave propagation in the unbounded, bounded	, vacuum,							
	dielectric, guided and unguided media.								
	• Understand the features of planer optical wave guide and obtain the Ele	ctric field							
	components, Eigen value equations, phase and group velocities in a dielectric wave								
	guide.								
UNIT	CONTENT	HOURS							
Ι	ELECTROSTATICS AND POLARIZATION	18							
	Gauss's law – Field due to an infinite, straight, uniformly charged wire –								
	Multipole expansion of a charge distribution Field inside a uniformly								
	polarized sphere - Electric field inside a dielectric - Electric displacement								
	and polarizability – Claussius- Mossotti relation – Polarization of polar								
	molecules and Langevin equation and Debye relation – Electrostatic energy.								

II	BOUNDARY VALUE PROBLEMS IN ELECTROSTATICS	18
	Boundary conditions – Potential at a point between the plates of a spherical	
	capacitor - Potential at a point due to uniformly charged disc - Method of	
	image charges - Point charge in the presence of a grounded conducting	
	sphere- Point charge in the presence of a charged, insulated conducting	
	sphere Conducting sphere in a uniform electric field – Laplace equation in	
	rectangular coordinates.	
III	MAGNETO STATICS	18
	Magnetic scalar and vector potentials – Magnetic dipole in a uniform field –	
	Magnetization current - Magnetic intensity - Magnetic susceptibility and	
	permeability- Hysteresis - Correspondences in electrostatics and magneto	
	statics.	
IV	FIELD EQUATIONS AND CONSERVATION	18
	Continuity equation - Displacement current - Maxwell's equations and their	
	physical significance - Poynting theorem - Energy in electromagnetic fields	
	- Electromagnetic potentials - Maxwell's equations in terms of	
	electromagnetic potentials – Lorentz and Coulomb gauges.	
V	ELECTROMAGNETIC WAVES AND WAVE PROPAGATION	18
	Electromagnetic waves in free space - Propagation of electromagnetic waves	
	in isotropic dielectrics and in anisotropic dielectrics - Reflection and	
	refraction of electromagnetic waves: Kinematic and dynamic properties -	
	TM and TE modes - Propagation in rectangular waveguides - Cavity	
	resonator.	
VI	• Dispersion relations in plasma	Group
	• Lorentz invariance of Maxwell's equation	Discussio
	• Transmission lines and waveguides	n
	• Radiation- from moving charges and dipoles and retarded potentials.	

- 1. J.D. Jackson, *Classical Electrodynamics* (John-Wiley, New York, 1999) 3rd edition.
- 2. K.K. Chopra and G.C. Agarwal, *Electromagnetic Theory* (K. Nath& Co., Meerut).

Reference Books:

- 1. D.J. Griffiths, Introduction to Electrodynamics (Pearson, Essex, 2014) 4th edition.
- 2. T.L. Chow, *Electromagnetic Theory* (Jones and Bartlett Learning, 2012).

Web-Resources:

- 1. Elements of Electromagnetic theory.pdf
- 2. Griffiths-Introduction to Electrodynamics 3e(prentice,1999).pdf

Course Outcome:

- CO 1: The theory of electromagnetic propagation of electromagnetic fields.
- CO 2: Learn the boundary value problem in electrostatics methods of image charges.
- CO 3: Understand Maxwell equation and its physical significance.
- CO 4: Learn Electromagnetic waves and wave propagation.
- CO 5: Understand magneto static and magnetic dipole

CO/PO			РО			PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	М	S	М	М	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	М	М	М	М	М	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S – Strongly Correlating

M – Moderately Correlating

W-Weakly Correlating

Semester-II /	QUANTUM MECHANICS	Course Code: PGPG
Core Course VI		
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember						
Level	K-2 Understand						
	K-3 Apply						
	K-4 Analyze						
	K-5 Evaluate						
	K-6 Create						
Course	• To learn the fundamental concepts and certain theoretical methods	of quantum					
Objectives	mechanics and their applications to microscopic systems.						
	• To discuss the concepts of wave/particle duality, probability distributions and wave						
	functions.						
	• To acquire working knowledge of quantum mechanics postulates on the	e evolution					
	of physical systems.						
	• To apply the postulates of quantum mechanics to simple harmonic oscillator.						
	• To understand relativistic Quantum mechanics.						
UNIT	CONTENT	HOURS					
Ι	SCHRÖDINGER EQUATION AND GENERAL FORMULATION	18					
	Schrödinger equation and its plane wave solution – Physical meaning and						
	conditions on the wave function - Expectation values- Hermitian						
	operators and their Properties - Commutator relations Uncertainty						
	relation Bra and Ket vectors - Hilbert space - Schrödinger, Heisenberg						
	and interaction pictures.						
II	EXACTLY SOLVABLE SYSTEMS	18					
1							
	Linear harmonic oscillator: Solving the one-dimensional Schrödinger						

	barrier potential –Rigid rotator – Hydrogen atom.						
III	APPROXIMATION METHODS TIME-INDEPENDENT PERTURBATION THEORY: Non- degenerate (first-order) and degenerate perturbation theories Stark effect – WKB approximation and its application to tunneling problem and quantization rules. TIME-DEPENDENT PERTURBATION THEORY: Constant and harmonic perturbations – Transition probability – Sudden approximation.	18					
IV	SCATTERING THEORY AND ANGULAR MOMENTUM SCATTERING THEORY: Scattering amplitude and cross-section – Green's function approach Born approximation and its application to square-well and screened-Coulomb potentials. ANGULAR MOMENTUM: Components of orbital angular momentum – Properties of L and L2 Eigen pairs of L2andLz– Spin angular momentum.	18					
V	RELATIVISTIC QUANTUM MECHANICS KleinGordon equation for a free particle and its solution – Dirac equation for a free particle and Dirac matrices Charge and current densities – Plane wave solution – Negative energy states – Zitterbewegung – Spin of a Dirac particle – Spin-orbit coupling.	18					
VI	 Spin-orbit coupling, fine structure WKB approximation, elementary theory of scattering Relativistic quantum mechanics (Klein-Gordon and Dirac equations), the semi-classical theory of radiation Tunneling through a barrier Time dependent perturbation theory and Fermi's golden rule, selection rules. 	Group discussion					

- 1. 1.V. Devanathan, *Quantum Mechanics*, Naroso Publishing House (2005)
- 2. 2.S. Rajasekar and R.Velusamy, *Quantum Mechanics I: The Fundamentals* (CRC Press, Boca Raton, 2015).

Reference Books:

- 1. R. Shankar, Principles of Quantum Mechanics (Springer, New Delhi, 2007).
- 2. L. Schiff, *Quantum Mechanics* (Tata McGraw Hill, New Delhi, 2014) 4th edition.

Web-Resources:

- 1. Introduction to quantum Mechanics.pdf
- 2. Introduction to quantum theory and Atomic structure-P.A.Cox.pdf
- 3. Quantum Mechanics- A Modern Development-L.Ballentine.pdf

Course Outcome:

CO1: Solves the time-independent Scrondinger equation as an solve intermediate step to solve the time dependent Scrondinger equation.

CO2: Identifies correctly the mathematical space that contains all possible states of a physical system, using Dirac 's equation.

CO3: Build a Hilbert space based on a complete set commuting observables.

CO4: Relativistic Quantum mechanics understanding the Klein Gordon equation for a free particle and Dirac equation for a free particle and Dirac matrices.

CO5: Compute the energy levels and evaluation the quantum simple harmonic oscillator.

Mapping of COs with POs & PSOs:

CO/PO	РО							PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	М	S	М	М
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

N-No Correlation

Semester-III /	PHYSICS PRACTICAL III	Course Code: PGPKY
Core Practical - II	(ELECTRONICS)	
Instruction Hours: 8	Credits: 4	Exam Hours: 3
Internal Marks -40	External Marks-60	Total Marks: 100

Cognitive	K-1 Acquire/Remember
Level	K-2 Understand
	K-3 Apply
	K-4 Analyze
	K-5 Evaluate
	K-6 Create
Course	• To gain practical knowledge by applying the experimental methods to correlate with
Objectives	the physics theory.
	• To learn the usage of general practical systems for various measurements.
	• Apply the analytical techniques and graphical analysis to the experimental data.
	• To develop intellectual communication skills and discuss the basic principles of
	scientific concepts in a group.
	• Practice different types of wiring and instruments connections keeping in mind
	technical, Economical, safety issues.
	Electronics Experiments
1.	Characteristics of LED and photo diodes
2.	Characteristics of laser diode and tunnel diode
3.	Digital to analog converters using op-amp
4.	Study of phase-shift oscillator using op-amp
5.	Design and study of Schmitt trigger using op-amp
6.	Astable and monostable multivibrators using IC555
7.	Characteristics of UJT

8.	Characteristics of SCR
9.	Design and study of Wein bridge oscillator using op-amp
10.	Design and study of square and triangular waves generators using OP AMP.
11.	Flip-flops RS,JK,& D
12.	Decoder,Encoder
13.	Characteristics of FET
14.	Characteristics of LDR.
15.	FET Amplifier

Course Outcome:

CO 1: Able to use radio astronomical data to measure physical properties of astronomical targets.

CO 2: Identify and solve basic communication problems, analyse transmitter and receivers.

CO 3: Demonstrate measuring of basic medical parameters.

CO 4: Analyse the radio channel characteristics and the cellular principles

CO 5: Ability to analyse improved data services in cellular communication.

Mapping of COs with POs & PSOs:

CO/PO	РО						PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	М	S	М	М
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

Semester-II/	MICROPROCESSOR AND	Course Code: PGPE1
Elective Course I	MICROCONTROLLER	
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember	
	K-1 Acquite/Kentenber	
Level	K-2 Understand	
	K-3 Apply	
	K-4 Analyze	
	K-5 Evaluate	
	K-6 Create	
Course	• To understand the basic concept of microprocessor.	
Objectives	• To understand techniques for faster execution of instructions and improv	ve speed of
	operation and performance microprocessors.	
	• To learn the fundamental programming concept and methodologies.	
	• To understand the basic architecture of intel 8085 microprocessor.	
	• To practice the fundamental programming methodologies in c pro	ogramming
	language.	
UNIT	CONTENT	HUIDS
UNIT	CONTENT	HOURS
UNIT I	CONTENT MICROPROCESSOR ARCHITECTURE AND INTERFACING	HOURS
UNIT I	CONTENT MICROPROCESSOR ARCHITECTURE AND INTERFACING Intel 8085 microprocessor architecture – Pin configuration – Instruction	HOURS 15
UNIT I	CONTENT MICROPROCESSOR ARCHITECTURE AND INTERFACING Intel 8085 microprocessor architecture – Pin configuration – Instruction cycle – Timing diagram – Instruction and data formats – Addressing modes	HOURS 15
UNIT	CONTENT MICROPROCESSOR ARCHITECTURE AND INTERFACING Intel 8085 microprocessor architecture – Pin configuration – Instruction cycle – Timing diagram – Instruction and data formats – Addressing modes Memory mapping and I/O mapping I/O scheme Memory mapping I/O	HOURS 15
UNIT	CONTENT MICROPROCESSOR ARCHITECTURE AND INTERFACING Intel 8085 microprocessor architecture – Pin configuration – Instruction cycle – Timing diagram – Instruction and data formats – Addressing modes Memory mapping and I/O mapping I/O scheme Memory mapping I/O interfacingData transfer schemes Synchronous and asynchronous data	HOURS 15
UNIT	CONTENT MICROPROCESSOR ARCHITECTURE AND INTERFACING Intel 8085 microprocessor architecture – Pin configuration – Instruction cycle – Timing diagram – Instruction and data formats – Addressing modes Memory mapping and I/O mapping I/O scheme Memory mapping I/O interfacingData transfer schemes Synchronous and asynchronous data transfer – Interrupt driven data transfer - Interrupts of Intel 8085.	HOURS 15
UNIT	CONTENT MICROPROCESSOR ARCHITECTURE AND INTERFACING Intel 8085 microprocessor architecture – Pin configuration – Instruction cycle – Timing diagram – Instruction and data formats – Addressing modes Memory mapping and I/O mapping I/O scheme Memory mapping I/O interfacingData transfer schemes Synchronous and asynchronous data transfer – Interrupt driven data transfer - Interrupts of Intel 8085.	HOURS 15
UNIT	CONTENT MICROPROCESSOR ARCHITECTURE AND INTERFACING Intel 8085 microprocessor architecture – Pin configuration – Instruction cycle – Timing diagram – Instruction and data formats – Addressing modes Memory mapping and I/O mapping I/O scheme Memory mapping I/O interfacingData transfer schemes Synchronous and asynchronous data transfer – Interrupt driven data transfer - Interrupts of Intel 8085. II ASSEMBLY LANGUAGE PROGRAMS (8085 ONLY)	HOURS 15 15
UNIT I II	CONTENT MICROPROCESSOR ARCHITECTURE AND INTERFACING Intel 8085 microprocessor architecture – Pin configuration – Instruction cycle – Timing diagram – Instruction and data formats – Addressing modes Memory mapping and I/O mapping I/O scheme Memory mapping I/O interfacingData transfer schemes Synchronous and asynchronous data transfer – Interrupt driven data transfer - Interrupts of Intel 8085. II ASSEMBLY LANGUAGE PROGRAMS (8085 ONLY) BCD arithmetic –Addition and subtraction two 8-bit and 16-bit numbers	HOURS 15 15
UNIT I II	CONTENT MICROPROCESSOR ARCHITECTURE AND INTERFACING Intel 8085 microprocessor architecture – Pin configuration – Instruction cycle – Timing diagram – Instruction and data formats – Addressing modes Memory mapping and I/O mapping I/O scheme Memory mapping I/O interfacingData transfer schemes Synchronous and asynchronous data transfer – Interrupt driven data transfer - Interrupts of Intel 8085. II ASSEMBLY LANGUAGE PROGRAMS (8085 ONLY) BCD arithmetic –Addition and subtraction two 8-bit and 16-bit numbers Largest and smallest numbers in a data set – Ascending order and	HOURS 15 15
UNIT	CONTENT MICROPROCESSOR ARCHITECTURE AND INTERFACING Intel 8085 microprocessor architecture – Pin configuration – Instruction cycle – Timing diagram – Instruction and data formats – Addressing modes Memory mapping and I/O mapping I/O scheme Memory mapping I/O interfacingData transfer schemes Synchronous and asynchronous data transfer – Interrupt driven data transfer - Interrupts of Intel 8085. II ASSEMBLY LANGUAGE PROGRAMS (8085 ONLY) BCD arithmetic –Addition and subtraction two 8-bit and 16-bit numbers Largest and smallest numbers in a data set – Ascending order and descending order –Sum of a series of a 8-bit numbers – Sum of a series of	HOURS 15 15
UNIT	CONTENT MICROPROCESSOR ARCHITECTURE AND INTERFACING Intel 8085 microprocessor architecture – Pin configuration – Instruction cycle – Timing diagram – Instruction and data formats – Addressing modes Memory mapping and I/O mapping I/O scheme Memory mapping I/O interfacingData transfer schemes Synchronous and asynchronous data transfer – Interrupt driven data transfer - Interrupts of Intel 8085. II ASSEMBLY LANGUAGE PROGRAMS (8085 ONLY) BCD arithmetic –Addition and subtraction two 8-bit and 16-bit numbers Largest and smallest numbers in a data set – Ascending order and descending order –Sum of a series of a 8-bit numbers – Sum of a series of multibyte decimal numbers – Square root of a number – Block movement	HOURS 15 15

	of data Time delay –Square-wave generator.	
III	PERIPHERALDEVICESANDMICROPROCESSORAPPLICATIONSGeneration of control signals for memory and I/O devices - I/O ports Programmable peripheral interface – Architecture of 8255A -Control word—Programmable interrupt controller (8259) 8279- Key board interfacing- Programmable counter- Intel 8253 -Architecture, control word and operation – Block diagram and interfacing of analog to digital converter (ADC 0800) – Digital to analog converter (DAC 0800)– Stepper motor – Traffic control.	15
IV	MICROCONTROLLER 8051 Features of 8051– Architecture –Pin configuration –Memory organization External data and program memory Counters and timers – Serial data input/output– Interrupt structure – External interrupts – Addressing modes - - Comparison between microprocessor and microcontroller.	15
V	8051 INSTRUCTION SET AND PROGRAMMING Instruction set – Data transfer, arithmetic and logical instructions – Boolean variable manipulation instructions – Program and machine control instructions – Simple programs – Addition and subtraction of two 8-bit and 16-bit numbers – Division – Multiplication Largest number in a set – Sum of a set of numbers.	15

- 1. 1.B.Ram, Fundamentals of Microprocessor and Microcomputers (DhanpatRaiPub., New Delhi,2006).
- 2. R. Gaonkar, Microprocessor Architecture, Programming and Applications with 8085

Reference Books:

- 1. M.A. Mazidi, J.G. Mazidi and R.D. Mckinlay, The 8051 Microcontroller and Embbeded
- 2. Systems using Assembly and C (Dorling Kindersley, New Delhi, 2013).
- 3. A.P. Godse and D.A.Godse, Microprocessors and Microcontrollers (Technical Pub., Pune, 2008).

Web-Resources:

- 1. https://www.javatpoint.com/microprocessor-vs-microcontroller
- 2. https://www.vssut.ac.in/lecture_notes/lecture1423813120.pdf

Course Outcome:

CO1: Write programs to run on 8085 microprocessor.

CO2: Understand and device techniques for faster execution of instruction, improve speed of operations.

CO3: Understand microprocessor and its advantage.

CO4: Describe the fundamental components of a C program e.g source file, header file, main function, functions and libraries.

CO5: Explain and apply fundamental syntax rules for identifies , declarations, expressions, statements and functions.

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	М	S	S	S	S	М	М	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S – Strongly Correlating

 $M-Moderately\ Correlating$

W - Weakly Correlating

Semester-II /	DATA COMMUNICATION AND	Course Code: PGPE1
Elective Course I	COMPUTER NETWORKS	
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember						
Level	K-2 Understand						
	K-3 Apply						
	K-4 Analyze						
	K-5 Evaluate						
	K-6 Create						
Course	• Become familiar with layered communication architectures (OSI and TCP	2/IP).					
Objectives	• Understand the client/server model and key application layer protocols.						
	 Learn sockets programming and how to implement client/server programs. 						
	• Understand the concepts of reliable data transfer and how TCP implem	ents these					
	concepts.						
	• Know the principles of congestion control and trade-offs in fairness and effective of the second s	fficiency.					
UNIT	CONTENT	HOURS					
Ι	Data transmission and encoding Concepts: Analog and Digital transmission,	15					
	Transmission impairments-Transmission media-Synchronous /						
	Transmissionimpairments-Transmissionmedia-Synchronous/Asynchronoustransmission-Lineconfigurations-interfacing.Digitaldata						
	Transmission impairments-Transmission media-Synchronous / Asynchronous transmission-Line configurations-interfacing. Digital data digital signals-Variations of NRZ and bi-phase-Digital data Analog signals-						
	Transmission impairments-Transmission media-Synchronous / Asynchronous transmission-Line configurations-interfacing. Digital data digital signals-Variations of NRZ and bi-phase-Digital data Analog signals- ASK, FSK, PSK, QPSK-Analog data digital signals-PCM, DM.						
П	Transmissionimpairments-Transmissionmedia-Synchronous/Asynchronoustransmission-Lineconfigurations-interfacing.Digitaldatadigitalsignals-VariationsofNRZ and bi-phase-DigitaldataAnalogsignals-ASK, FSK, PSK, QPSK-Analogdatadigitalsignals-PCM, DM.Introductionandservices-Errordetectionandcorrection-Multipleaccess	15					
П	Transmissionimpairments-Transmissionmedia-Synchronous/Asynchronoustransmission-Lineconfigurations-interfacing.Digitaldatadigitalsignals-VariationsofNRZ and bi-phase-DigitaldataAnalogsignals-ASK, FSK, PSK, QPSK-Analogdatadigitalsignals-PCM, DM.Introductionandservices-Errordetectionandcorrection-Multipleaccessprotocols-LANsoAddressing & ARP-LinkvirtualizationoMPLS•Data	15					
П	Transmission impairments-Transmission media-Synchronous / Asynchronous transmission-Line configurations-interfacing. Digital data digital signals-Variations of NRZ and bi-phase-Digital data Analog signals- ASK, FSK, PSK, QPSK-Analog data digital signals-PCM, DM. Introduction and services - Error detection and correction - Multiple access protocols - LANs o Addressing & ARP - Link virtualization o MPLS • Data center networking - Web request processing - Data Link Control Flow	15					
Π	Transmission impairments-Transmission media-Synchronous / Asynchronous transmission-Line configurations-interfacing. Digital data digital signals-Variations of NRZ and bi-phase-Digital data Analog signals- ASK, FSK, PSK, QPSK-Analog data digital signals-PCM, DM. Introduction and services - Error detection and correction - Multiple access protocols - LANs o Addressing & ARP - Link virtualization o MPLS • Data center networking - Web request processing - Data Link Control Flow control, Error control-HDLC, Multiplexing.	15					
II	Transmissionimpairments-Transmissionmedia-Synchronous/Asynchronoustransmission-Lineconfigurations-interfacing.Digitaldatadigitalsignals-VariationsofNRZ and bi-phase-DigitaldataAnalogsignals-ASK, FSK, PSK, QPSK-Analogdatadigitalsignals-PCM, DM.DM.Introductionandservices - Errordetectionandcorrection - Multipleaccessprotocols - LANs oAddressing & ARP - Linkvirtualization oMPLS • Datacenternetworking - Webrequestprocessing - DataLinkControlFlowcontrol, Errorcontrol-HDLC, Multiplexing.IntroductiontoComputerNetworksandthePhysicalLayerIntroduction:	15					
II	Transmission impairments-Transmission media-Synchronous / Asynchronous transmission-Line configurations-interfacing. Digital data digital signals-Variations of NRZ and bi-phase-Digital data Analog signals- ASK, FSK, PSK, QPSK-Analog data digital signals-PCM, DM. Introduction and services - Error detection and correction - Multiple access protocols - LANs o Addressing & ARP - Link virtualization o MPLS • Data center networking - Web request processing - Data Link Control Flow control, Error control-HDLC, Multiplexing. Introduction to Computer Networks and the Physical Layer Introduction: The uses of computer networks-Network hardware-Network software-	15					

	physical layer: The theoretical basis for data communication-Guided Transmission media-Wireless transmission.					
IV	Error detection and correction-Elementary data link protocols-Sliding window protocols-Example of data link protocols-ETHERNET. The network layer: Network layer design issues-Routing algorithms-Congestion control algorithms Ethernet o Switches o VLANs o PPP	15				
V	V The transport and the Application Layers The transport layer: Transport layer design issues-Transport protocols-Simple transport protocol- Internet transport protocols UDP, TCP. The application layer: Domain name system- Electronic mail-World Wide Web.					

- 1. Edition, 2008.
- 2. Andrew S. Tanenbaum, "Computer networks", Prentice-Hall of India, New Delhi, 4th edition 2005.
- 3. Behrouz Forouzan, "Introduction to Data Communication and Networking", Tata McGraw-Hill, 2000.

Reference Books:

- 1. Douglas E. Comer, "Internet working with TCP/IP-Volume-I", Prentice-Hall of India, 4th Edition, 2001.
- 2. Paub and Schilling, "Principles of Communication System", MacGraw Hill, 1986.
- James F. Kurose and Keith W. Ross, "Computer Networking-A top down Approach Featuring the Internet", Pearson Education, Asia, 3rd Edition-2006.

Web-Resources:

- 1. http://nptel.ac.in/courses/106105082/
- 2. http://www.networkworld.com/blogs

Course Outcome:

- CO 1: Understand importance of data communication systems and fundamentals.
- CO 2: Distinguish and relate various physical Medias, interfacing standards and adapters.
- CO 3: Explain various flow control techniques.
- CO 4: Analyze short range and long range wireless technologies
- CO 5: Analyze various modulation technique in analog and digital careery system

CO/PO	РО						PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	М	S	S	S	S	S
CO2	S	М	S	S	S	S	S	S	S	М
CO3	S	S	S	S	М	S	S	S	S	S
CO4	S	М	S	S	М	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

Mapping of COs with POs & PSOs:

- S Strongly Correlating
- M Moderately Correlating
- W-Weakly Correlating
- N No Correlation

Semester-II /	NUMERICAL METHODS AND C++	Course Code: PGPE2
Elective Course II	PROGRAMMING	
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember	
Level	K-2 Understand	
	K-3 Apply	
	K-4 Analyze	
	K-5 Evaluate	
	K-6 Create	
Course	• To learn the necessarily of methods of least square for fitting a graph.	
Objectives	• To learn the numerical methods of computing certain mathematical qu	antities,
	construction and evaluation of a function and solution of an ordinary dif	ferential
	equation.	
	• To Write C++ computer programming necessary for numerical simula	ation of
	physical problems.	
	• Know about the basis theory of errors, their analysis, estimation with example.	nples of
	simple experiments in physics.	
	• Learn to write C++ Program for all the methods.	
UNIT	CONTENT	HOURS
Ι	CURVE FITTING AND INTERPOLATION	15
	CURVE FITTING: Method of least-squares - Straight-line fit Exponential	
	and power-law fits.	
	INTERPOLATION: Newton interpolation polynomial: Linear interpolation,	
	Higher-order polynomials and first-order divided differences - Gregory	
	Newton interpolation polynomials – Lagrange interpolation.	
II	SOLUTIONS OF LINEAR AND NONLINEAR EQUATIONS	15
	SIMULTANEOUS LINEAR EQUATIONS: Upper triangular form and	
	back substitution -Augmented matrix Gauss elimination method Jordan's	
-----	--	----
	modification Inverse of a matrix by GaussJordan method.	
	ROOTS OF NONLINEAR EQUATIONS: Bi-section method and Newton	
	Raphson method.	
III	NUMERICAL INTEGRATION AND DIFFERENTIATION	15
	NUMERICAL INTEGRATION: Trapezoidal and Simpson's 1/3 rules	
	Errors in the formulae Composite trapezoidal and Simpson's 1/3 rules -	
	Simpson's 3/8 rules - Errors in the formulae.	
IV	PROGRAMMING IN C++	15
	Constants and variables I/O operators and statements Header files Main	
	function - Conditional statements Switch statement Void function	
	Function program For, while and do-while statements Break, continue	
	and go to statements - Arrays.	
V	PROGRAMMING IN C++	15
	1. Least-squares curve fitting – Straight-line fit	
	2. Least-squares curve fitting – Exponential fit	
	3. Real roots of one-dimensional nonlinear equations Newton Raphson	
	method	
	4. Complex roots of one-dimensional nonlinear equations Newton Raphson	
	method	
	5. Interpolation – Lagrange method	
	6. Numerical integration – Composite trapezoidal rule	
	7. Numerical integration – Composite Simpson's 1/3 rule	

- 1. J. R. Hubbard, Programming with C++ (McGraw-Hill, New Delhi, 2006).
- 2. E. Balagurusamy, Objected Oriented Programming in C++ (McGraw Hill, New Delhi,

Reference Books:

- 1. M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation (New Age International, New Delhi, 1993).
- J.H. Mathews, Numerical Methods for Mathematics, Science and Engineering (Prentice-Hall of India, New Delhi, 1998).

Web-Resources:

1. Fundamental of Numerical Methods and Data Analysis-G.Collins.pdf

Course Outcome:

CO 1: To Equip them with sufficient Knowledge base of physics so that they do not find any difficulty pursuing higher Education

CO 2: Trained practical exposure which could equip to face the challenges in Physics.

CO 3: Understanding the Programming in C++ in constants and variables of the functions

CO 4: To Write C++ computer programming necessary for numerical integration to trapezoidal and simpson 's 1/3 rule

CO 5: Understand the various statements and Arrays.

CO/PO	РО							PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	М	М
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	М	М	S	S	S	S	S	S	М	S

Mapping of COs with POs & PSOs:

S – Strongly Correlating

M – Moderately Correlating

W-Weakly Correlating

Semester-II /	COMPUTER ORGANIZATION	Course Code: PGPE2
Elective Course II		
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember	
Level	K-2 Understand	
	K-3 Apply	
	K-4 Analyze	
	K-5 Evaluate	
	K-6 Create	
Course	• Understand the organization of a computer with its various processing	ng units,
Objectives	memory and peripherals.	
	• Understand the modern computer with its various processing units.	Also the
	Performance measurement of the computer system.	
	• In addition to this the memory management syste	em of
	the computer.	
	• They can analyze the performance of a computer using the performance equ	ation
	• Understanding of different instruction types	
UNIT	CONTENT	HOURS
UNIT	CONTENT	HOURS
UNIT I	CONTENT Basic Structures of Computers	HOURS
UNIT I	CONTENT Basic Structures of Computers Functional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit,	HOURS 15
UNIT I	CONTENT Basic Structures of Computers Functional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit, Output Unit, Control Unit, Basic Operational Concepts, Bus Structures.	HOURS 15
UNIT I II	CONTENT Basic Structures of Computers Functional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit, Output Unit, Control Unit, Basic Operational Concepts, Bus Structures. Machine Instructions & Programmes	HOURS 15 15
UNIT I II	CONTENT Basic Structures of Computers Functional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit, Output Unit, Control Unit, Basic Operational Concepts, Bus Structures. Machine Instructions & Programmes Memory Locations and Addresses , Byte Addressability, Big Endian and	HOURS 15 15
UNIT I II	CONTENT Basic Structures of Computers Functional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit, Output Unit, Control Unit, Basic Operational Concepts, Bus Structures. Machine Instructions & Programmes Memory Locations and Addresses , Byte Addressability, Big Endian and Little Endian Assignments, Word Alignment, Accessing numbers, characters	HOURS 15 15
UNIT I II	CONTENTBasic Structures of ComputersFunctional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit, Output Unit, Control Unit, Basic Operational Concepts, Bus Structures.Machine Instructions & ProgrammesMemory Locations and Addresses , Byte Addressability, Big Endian and Little Endian Assignments, Word Alignment, Accessing numbers, characters and character strings, Memory Operations, Instruction and Instruction	HOURS 15 15
UNIT I II	CONTENT Basic Structures of Computers Functional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit, Output Unit, Control Unit, Basic Operational Concepts, Bus Structures. Machine Instructions & Programmes Memory Locations and Addresses , Byte Addressability, Big Endian and Little Endian Assignments, Word Alignment, Accessing numbers, characters and character strings, Memory Operations, Instruction and Instruction sequencing, Register Transfer notation, Assembly Language notation, Basic	HOURS 15 15
UNIT I II	CONTENT Basic Structures of Computers Functional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit, Output Unit, Control Unit, Basic Operational Concepts, Bus Structures. Machine Instructions & Programmes Memory Locations and Addresses , Byte Addressability, Big Endian and Little Endian Assignments, Word Alignment, Accessing numbers, characters and character strings, Memory Operations, Instruction and Instruction sequencing, Register Transfer notation, Assembly Language notation, Basic instruction types, Instruction execution and straight line sequencing,	HOURS 15 15
UNIT I II	CONTENT Basic Structures of Computers Functional Units, Input Unit, Memory Unit, Arithmetic and Logic Unit, Output Unit, Control Unit, Basic Operational Concepts, Bus Structures. Machine Instructions & Programmes Memory Locations and Addresses, Byte Addressability, Big Endian and Little Endian Assignments, Word Alignment, Accessing numbers, characters and character strings, Memory Operations, Instruction and Instruction sequencing, Register Transfer notation, Assembly Language notation, Basic instruction types, Instruction execution and straight line sequencing, Branching Condition codes Addressing modes Implementation of variables	HOURS 15 15

	and constants, Indirection and pointers, Indexing and arrays, Relative addressing, Additional modes, Assembly Language, Assembler directives, Assembly and execution of programs, Basic Input- Output Operations.	
III	Basic Processing Unit Some Fundamental Concepts, Register transfers, Performing an Arithmetic or Logic operation, Fetching a word from memory, Storing a word in memory, Execution of a complete Instruction, Branch instructions, Multiple Bus Organization, Hardwired Control(basic block diagram only), A complete processor, Basic organization of Micro programmed Control Unit	15
IV	Input Output Organization Accessing I/O Devices, Interrupts, Interrupt Hardware, Enabling and Disabling\ Interrupts, Handling Multiple Devices, Controlling Device requests, Exceptions, Direct Memory Access, Bus arbitration, Buses, Synchronous bus, Asynchronous bus, Interface Circuits, Parallel port and Serial port (Basic concept only), Standard I/O Interfaces (Basic concepts only), Peripheral Component Interconnect (PCI) Bus , SCSI Bus(Basic concepts only), Universal Serial Bus (USB) (Basic concepts only)	15
Unit V	The Memory System Some Basic Concepts, Semiconductor RAM Memories, Internal Organization of memory chips, Static Memories, Asynchronous DRAMs, Synchronous DRAMs, Structure of larger memories, Memory system consideration, Rambus memory, Read-Only Memories- ROM, PROM, EPROM, EEPROM, Flash Memory, Speed, Size and Cost, Cache Memories.	15

- Computer Organization, Carl Hamacher, zvonko Vranesic and Safwat Zaky, McGraw Hill, 5th edition
- Advanced Computer Architecture (A practical approach), Rajiv Chopra, S. Chand, Revised edition, reprint 2014, ISBN8121930774

Reference Books:

- William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.
- 2. Computer architecture and organization, 4th edition, P Chakraborty, JAICO Publishers

Web-Resources:

- 1. http://www.srmuniv.ac.in/downloads/computer_architecture.pdf
- 2. http://www.dauniv.ac.in/downloads/CArch_PPTs/CompArchCh06L01PipeLine.pdf
- 3. http://elearning.vtu.ac.in/06CS46.html
- 4. . http://nptel.ac.in/courses/Webcourse-contents/IIT

%20Guwahati/comp_org_arc/web/

Course Outcome:

CO 1: Recognize and explain the functional units of computers

CO 2: Describe assembly languages and machine instructions by analyzing how the data is stored and fetched from memory.

CO 3: Explain the execution of complete instruction and bus organizations.

CO 4: Identify various interrupt handling mechanism and buses.

CO 5: Differentiate between different types of memories.

CO/PO	РО							PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	М	S	S	S	S	S	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	S	S	М	S	S	S	S	S	S
CO4	S	S	S	М	S	S	S	М	S	S
CO5	S	S	М	М	S	S	S	М	S	S

Mapping of COs with POs & PSOs:

S – Strongly Correlating

 $M-Moderately\ Correlating$

W-Weakly Correlating

Semester-III /	STATISTICAL MECHANICS	Course Code: PGPI
Core Course VII		
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember	
Level	K-2 Understand	
	K-3 Apply	
	K-4 Analyze	
	K-5 Evaluate	
	K-6 Create	
Course	• Explain statistical physics and the thermodynamics as logical consequences	nces of the
Objectives	postulates of statistical mechanics.	
	• Apply the principles of statistical mechanics to selected problems	
	• Carps the basis of ensembles approach in statistical mechanics to range of	situations
	• To learn the fundamental difference between classical and quantum sta	atistics and
	learn about quantum statistical distribution law	
UNIT	CONTENT	HOURS
Ι	Thermodynamics	18
	Thermo dynamical laws and their consequences - Entropy Changes in	
	Thermo dynamical laws and their consequences – Entropy Changes in entropy in reversible processes Principle of increase of entropy	
	Thermo dynamical laws and their consequences – Entropy Changes in entropy in reversible processes Principle of increase of entropy Thermodynamic functions- Enthalpy, Helmholtz and Gibbs functions	
	Thermo dynamical laws and their consequences – Entropy Changes in entropy in reversible processes Principle of increase of entropy Thermodynamic functions- Enthalpy, Helmholtz and Gibbs functions Phase transitions –Clausius-Clayperon equation –Van der Wall equation of	
	Thermo dynamical laws and their consequences – Entropy Changes in entropy in reversible processes Principle of increase of entropy Thermodynamic functions- Enthalpy, Helmholtz and Gibbs functions Phase transitions –Clausius-Clayperon equation –Van der Wall equation of state.	
П	Thermo dynamical laws and their consequences – Entropy Changes in entropy in reversible processes Principle of increase of entropy Thermodynamic functions- Enthalpy, Helmholtz and Gibbs functions Phase transitions –Clausius-Clayperon equation –Van der Wall equation of state.	18
П	Thermo dynamical laws and their consequences – Entropy Changes in entropy in reversible processes Principle of increase of entropy Thermodynamic functions- Enthalpy, Helmholtz and Gibbs functions Phase transitions –Clausius-Clayperon equation –Van der Wall equation of state. Kinetic Theory	18
Π	Thermo dynamical laws and their consequences – Entropy Changes in entropy in reversible processes Principle of increase of entropy Thermodynamic functions- Enthalpy, Helmholtz and Gibbs functions Phase transitions –Clausius-Clayperon equation –Van der Wall equation of state. Kinetic Theory Boltzmann transport equation and its validity Boltzmann's H-theorem	18
П	Thermo dynamical laws and their consequences – Entropy Changes in entropy in reversible processes Principle of increase of entropy Thermodynamic functions- Enthalpy, Helmholtz and Gibbs functions Phase transitions –Clausius-Clayperon equation –Van der Wall equation of state. Kinetic Theory Boltzmann transport equation and its validity Boltzmann's H-theorem Relation between H-function and entropy MaxwellBoltzmann	18
П	Thermo dynamical laws and their consequences – Entropy Changes in entropy in reversible processes Principle of increase of entropy Thermodynamic functions- Enthalpy, Helmholtz and Gibbs functions Phase transitions –Clausius-Clayperon equation –Van der Wall equation of state. Kinetic Theory Boltzmann transport equation and its validity Boltzmann's H-theorem Relation between H-function and entropy MaxwellBoltzmann distributionMean free path – Conservation laws Transport phenomena	18
Π	Thermo dynamical laws and their consequences – Entropy Changes in entropy in reversible processes Principle of increase of entropy Thermodynamic functions- Enthalpy, Helmholtz and Gibbs functions Phase transitions –Clausius-Clayperon equation –Van der Wall equation of state. Kinetic Theory Boltzmann transport equation and its validity Boltzmann's H-theorem Relation between H-function and entropy MaxwellBoltzmann distributionMean free path – Conservation laws Transport phenomena – Viscosity of gases Thermal conductivity Diffusion process.	18
II	Thermo dynamical laws and their consequences – Entropy Changes in entropy in reversible processes Principle of increase of entropy Thermodynamic functions- Enthalpy, Helmholtz and Gibbs functions Phase transitions –Clausius-Clayperon equation –Van der Wall equation of state. Kinetic Theory Boltzmann transport equation and its validity Boltzmann's H-theorem Relation between H-function and entropy MaxwellBoltzmann distributionMean free path – Conservation laws Transport phenomena – Viscosity of gases Thermal conductivity Diffusion process. Classical Statistical Mechanics	18

	Statistical ensembles - Density function Liouville's theorem Maxwell—Boltzmann distribution law Micro canonical ensemble – Ideal gas – Entropy – Partition function – Equipartition theorem –Canonical and grand canonical ensembles.	
IV	Quantum Statistical Mechanics Basic concepts Ideal quantum gas – BoseEinstein statistics Photon statisticsFermi-Dirac statistics Sackur-Tetrode equation – Equation of state Bose-Einstein condensation –Comparison of classical and quantum statistics.	18
V	 Applications of Quantum statistical Mechanics Ideal Bose System: Photons – Black body and Planck radiation – Specific heatof solids – Liquid helium. Ideal Fermi System: Properties – Degeneracy – Electron gas Pauli paramagnetism. Ferromagnetism: Ising and Heisenberg models. 	18
VI	 Fluctuation-dissipation theorem. Onsager reciprocal relations. Green-Kubo relations. Landauer-Büttiker formalism. Mori-Zwanzig formalism. 	Group Discussion

- 1. S.K. Sinha, Introduction to Statistical Mechanics (Narosa, New Delhi, 2007).
- 2. K. Huang, Statistical Mechanics (Wiley Eastern Limited, New Delhi, 1963).

Reference Books:

 Singhal, Agarwal, Prakash, *Thermodynamics and Statistical Physics* (Prakashan, Meerut, 2003). 2. W. Greiner, L. Neise and H. Stocker, *Thermodynamics and Statistical Mechanics* (Springer, New York, 1995).

Web-Resources:

- 1. www.math.ox.ac.uk
- 2. www.math.upenn.edu.
- Mathematical Physics-A Modern Intro to its Foundations S.Hassani(Springer, 1999)WW.pdf

Course Outcome:

CO 1: They easily to determine the probability of any type of an event.

CO 2: Students have understood the concept of phase space and its volume.

CO 3: They can easily distinguish between different types of particles and statistics.

CO 4: They can easily distribute bosons and fermions and classical particles among energy levels.

CO 5: After studying Fermi Dirac Statistics, students have learnt to deal with many electron systems in real life.

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	М	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	М	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

Semester-III/	SOLID STATE PHYSICS	Course Code: PGPJ
Core Course VIII		
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember	
Level	K-2 Understand	
	K-3 Apply	
	K-4 Analyze	
	K-5 Evaluate	
	K-6 Create	
Course	• The course gives an introduction to solid state physics, and will enable th	e student
Objectives	to employ classical and quantum mechanical theories needed to underst	stand the
	physical properties of solids. Emphasis is put on building models able to	o explain
	several different phenomena in the solid state.	
	• Understand the influence of lattice vibrations on thermal behavior	
	• Apply the free electron theory to solids to describe electronic behavior and	l Explain
	how a lattice vibrates at finite temperature, and how these vibrations deter	mine the
	heat capacity and conduction.	
	• Know the concept density of states in one, two and three dimensions.	
	• Explain simple theories for conduction of heat and electrical current in me	tals.
UNIT	CONTENT	HOURS
Ι	Lattice Vibrations and Thermal Properties	18
	Vibration of monatomic lattices – Lattices with two atoms per primitive cell	
	-Quantization of lattice vibrations - Phonon momentum - Inelastic scattering	
	of neutrons by phonons- Lattice heat capacity - Einstein model - Density of	
	modes in one-dimension and three dimension- Debye model of the lattice	
	heat capacity – Thermal conductivity – Umklapp process.	
II	Free Electron Theory, Energy Bands and Semiconductor Crystal	18
	Energy levels and density of orbitals - Fermi-Dirac distribution - Free	

	electron gas in 3D - Heat capacity of electron gas - Electrical conductivity -	
	Motion in magnetic fields - Hall effect - Thermal conductivity - Nearly	
	conductivity of metals - Nearly free electron model - Electron ina periodic	
	potential -Semiconductors - Band gap - Effective mass - Intrinsic carrier	
	concentration.	
		10
111	Dia, Para, Ferro and Antiferro-Magnetisms	18
	Langevin classical theory of dia- and para-magnetisms – Weiss theory –	
	Quantum theory of paramagnetism – Paramagnetic susceptibility of	
	conduction electrons - Hund's rules - Ferroelectric order - Curie point and	
	the exchange integral – Temperature dependence of saturation magnetization	
	- Magnons - Ferromagnetic order- Antiferromagnetic order -Ferromagnetic	
	domains – Origin of domains – Coercive force and hysteresis.	
IV	Basics of Nonlinear Optics	18
	Wave propagation in an anisotropic crystal – Polarization response of	
	materials to light –Harmonic generation – Second harmonic generation –	
	Sum and difference frequency generation – Phase matching – Third harmonic	
	generation – Terahertz – Bistability – Self-focusing.	
	Nonlinear Optical Materials	
	Basic requirements – Inorganics – Borates – Organics – Urea, Nitroaniline –	
	Semi organics – Thoreau complex – Laser induced surface damage threshold.	
V	Thin Film physics and Deposition Techniques	18
	Principle of gel technique – Various types of gel Structure and importance	
	of gel – Methods of gel growth and advantages Melt technique –	
	Bridgeman method - Flux growth - Hydrothermal growth - Vapor-phase	
	growth-Physical vapor deposition – Chemical vapor deposition.	
	Vacuum evaporation E-beam, pulsed laser and ion beam evaporations -	
	Glow discharge and plasmas Mechanisms and yield of sputtering processes	
	- DC, RF, magnetically enhanced, reactive sputterings- Spray pyrolysis -	
	Electro deposition – Sol-gel technique.	

VI	٠	Electronic devices such as mobiles and computers	Project
	•	Optical devices such as lasers and fibre optics	
	•	Magnet based devices such as Magnetic Resonance Imaging (MRI) and	
		vibrating devices	
	•	Silicon-based logic and memory bits	

- 1. C. Kittel, *Introduction to Solid State Physics* (Wiley Eastern, New Delhi, 2007)7th edition.
- 2. S.O. Pillai, Solid State Physics (New Age International, New Delhi, 2005) 6thedition.
- 3. H.C. Gupta, Solid State Physics (Vikas Publishing House, Noida, 2001) 2ndedition.

Reference Books:

- 1. N.W, Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart and
- 2. Winston, Philadelphia, 1976).
- 3. Rita John, Solid State Physics (McGraw Hill, New Delhi, 2014).

Web-Resources:

- 1. www.math.ox.ac.uk
- 2. www.math.upenn.edu

Course Outcome:

CO 1: Students will develop range of communication and teaching skills.

CO 2: How diffraction of electromagnetic waves on solid matter can be used to obtain lattice structure.

CO 3: Know the concept of phonons, and how the dispersion relationship appears for different lattice structures.

CO 4: Explain how a lattice vibrates at finite temperature, and how these vibrations determine the heat capacity and conduction.

CO 5: Apply models to describe defects and diffusion.

Mapping of COs with POs & PSOs:

CO/PO	РО						PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	М	S	S	S	М	S	S
CO2	S	S	S	М	М	S	S	S	S	S
CO3	S	М	М	S	S	S	S	S	М	S
CO4	S	S	S	S	S	S	М	S	М	S

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

Semester-II/	MICROPROCESSOR AND	Course Code: PGPHY
Core Practical III	PROGRAMMING	
Instruction Hours: 8	Credits: 4	Exam Hours: 3
Internal Marks -40	External Marks-60	Total Marks: 100

Cognitive	K-1 Acquire/Remember
Level	K-2 Understand
	K-3 Apply
	K-4 Analyze
	K-5 Evaluate
	K-6 Create
Course	• To develop programming skills of microprocessor and C++ programming in
Objectives	solving some mathematical problems and their applications.
	• In the laboratory he is expected to study of interfacing, Traffic control system,
	Control of
	• stepper motor using microprocessor.
	• To demonstrate simple programmes using assembly language and execute the
	programme
	• using a μp 8085 kit.
	• Write and solve the problems in curve fitting and Numerical Analysis.
	• Write C++ programming algorithms, flowcharts.
	A. MICROPROCESSOR (8085)
1.	Finding the largest and smallest numbers in a data array
2.	Arranging a set of numbers in ascending and descending orders
3.	Study of multibyte decimal addition
4.	Study of multibyte decimal subtraction
5.	Interfacing hexa key board (IC 8212)
6.	Study of seven segment display

7.	Study of DAC interfacing (DAC 0900)
8.	Study of ADC interfacing (ADC 0809)
9.	Traffic control system
10.	Control of stepper motor using microprocessor
	B. C++ PROGRAMMING
1.	Least-squares curve fitting – Straight-line fit
2.	Least-squares curve fitting – Exponential fit
3.	Real roots of one-dimensional nonlinear equations Newton Raphson method
4.	Complex roots of one-dimensional nonlinear equations Newton Raphson Method.
5.	Interpolation – Lagrange method
6.	Numerical integration – Composite trapezoidal rule
1.	Numerical integration – Composite Simpson's 1/3 rule

Course Outcome:

CO 1: Equip them with sufficient Knowledge base of physics so that they do not find any difficulty pursuing higher Education.

CO 2: Trained practical exposure which could equip to face the challenges in Physics.

CO 3: Understanding the Programming in C++ in constants and variables of the functions

CO 4: Demonstrate simple programmers using assembly language and execute the programme using a µp 8085 kit.

CO 5: Write C++ computer programming necessary for numerical integration to trapezoidal and Simpson's 1/3 rule

Mapping of COs with POs & PSOs:

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	М	S	S	S	S	М	М	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

Semester-III /	Nano Materials and Applications	Course Code: PGPE3
Elective Course-III		
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember								
Level	K-2 Understand								
	K-3 Apply								
	K-4 Analyze								
	K-5 Evaluate								
	K-6 Create								
Course	• To understand the theoretical concepts involved in crystal growth and	thin film							
Objectives	sciences and to learn the basic characterizing techniques of materials.								
	• To foundational knowledge of the Nanoscience and related fields.								
	• To make the students acquire an understanding the Nanoscience and Applica	tions							
	• To help them understand in broad outline of Nanoscience and Nanotechnolog	gy.							
	• For Nanomaterials understood the principles and Characterization Technique	es.							
	• Understand and improved the application of Nanotechnology.								
UNIT	CONTENT	HOURS							
UNIT I	CONTENT Back ground of Nano technology	HOURS							
UNIT I	CONTENT Back ground of Nano technology Scientific revolution-Emergence of Nano technology, Challenges in Nano	HOURS 15							
UNIT I	CONTENT Back ground of Nano technology Scientific revolution-Emergence of Nano technology, Challenges in Nano technology –Periodic Table, Atomic structures, Molecules and Phases-Energy,	HOURS 15							
UNIT I	CONTENT Back ground of Nano technology Scientific revolution-Emergence of Nano technology, Challenges in Nano technology –Periodic Table, Atomic structures, Molecules and Phases-Energy, Atomic size surfaces and dimensional space	HOURS 15							
UNIT I	CONTENT Back ground of Nano technology Scientific revolution-Emergence of Nano technology, Challenges in Nano technology –Periodic Table, Atomic structures, Molecules and Phases-Energy, Atomic size, surfaces and dimensional space.	HOURS 15							
UNIT I II	CONTENT Back ground of Nano technology Scientific revolution-Emergence of Nano technology, Challenges in Nano technology –Periodic Table, Atomic structures, Molecules and Phases-Energy, Atomic size, surfaces and dimensional space. Preparation of Nano Materials	HOURS 15 15							
UNIT I II	CONTENT Back ground of Nano technology Scientific revolution-Emergence of Nano technology, Challenges in Nano technology –Periodic Table, Atomic structures, Molecules and Phases-Energy, Atomic size, surfaces and dimensional space. Preparation of Nano Materials Nano Material-Preparation-Top down-ball milling,Nano lithography- Bottom up,	HOURS 15 15							
UNIT I II	CONTENT Back ground of Nano technology Scientific revolution-Emergence of Nano technology, Challenges in Nano technology –Periodic Table, Atomic structures, Molecules and Phases-Energy, Atomic size, surfaces and dimensional space. Preparation of Nano Materials Nano Material-Preparation-Top down-ball milling,Nano lithography- Bottom up, Self Assembly -Sol gel -Hydro thermal method-Polyol Process	HOURS 15 15							
UNIT I II	CONTENT Back ground of Nano technology Scientific revolution-Emergence of Nano technology, Challenges in Nano technology –Periodic Table, Atomic structures, Molecules and Phases-Energy, Atomic size, surfaces and dimensional space. Preparation of Nano Materials Nano Material-Preparation-Top down-ball milling,Nano lithography- Bottom up, Self Assembly -Sol gel -Hydro thermal method-Polyol Process	HOURS 15 15							
UNIT I II III	CONTENT Back ground of Nano technology Scientific revolution-Emergence of Nano technology, Challenges in Nano technology –Periodic Table, Atomic structures, Molecules and Phases-Energy, Atomic size, surfaces and dimensional space. Preparation of Nano Materials Nano Material-Preparation-Top down-ball milling,Nano lithography- Bottom up, Self Assembly -Sol gel -Hydro thermal method-Polyol Process carbon nano structures	HOURS 15 15 15							
UNIT I II III	CONTENT Back ground of Nano technology Scientific revolution-Emergence of Nano technology, Challenges in Nano technology –Periodic Table, Atomic structures, Molecules and Phases-Energy, Atomic size, surfaces and dimensional space. Preparation of Nano Materials Nano Material-Preparation-Top down-ball milling,Nano lithography- Bottom up, Self Assembly -Sol gel -Hydro thermal method-Polyol Process Carbon nano structures Carbon molecules and carbon bond C60: Discovery and structure of C60 and its	HOURS 15 15 15							
UNIT I II III	CONTENT Back ground of Nano technology Scientific revolution-Emergence of Nano technology, Challenges in Nano technology –Periodic Table, Atomic structures, Molecules and Phases-Energy, Atomic size, surfaces and dimensional space. Preparation of Nano Materials Nano Material-Preparation-Top down-ball milling,Nano lithography- Bottom up, Self Assembly -Sol gel -Hydro thermal method-Polyol Process Carbon nano structures Carbon molecules and carbon bond C60: Discovery and structure of C60 and its crystal	HOURS 15 15 15							

	 Electrical properties – Vibrational properties – Mechanical properties Applications (fuel cells, chemical sensors, catalysts). 	
IV	Characterization of Nanomaterials Principles, experimental set-up, procedure and utility of scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning tunneling microscope (STM) and scanning probe microscopy (SPM).	15
V	Applications Molecular electronics and nanoelectronics – Nanorobots Biological applications of nanoparticles - Catalysis by gold nanoparticles – Band-gap engineered quantum devices Nanomechanics CNT emitters – Photoelectrochemical cells Photonic crystals – Plasmon waveguides.	15
VI	 Preparation of Nanofertilizers Synthesis of silver nanoparticles by biological method Use of nanoparticles in medicine Preparation of copper nanoparticles Grapheme in mobile phones Silica nano particles in textile industry Nano coatings for car 	Project

- 1. 1. ManasiKarkare, Nano Technology Fundamentals and Applications.
- 2. K.InternationalPublishing House Limited.
- 3. CharlesP.Poole JRAnd Frank Owens."Introductionto Nanotechnology"Wiley,2003.
- 4. B.B.Laud, NonLinear Optics, 2ndEdn.NewAge International (P)Limited.Delhi, 1991.

Reference Books:

- 1. RobertW.Boyd, Non Linear Optics, 2ndEdn.AcademicPress,Newyork,2003.
- 2. K.Ravichandran, K.Swaminathan,B.SakthivelC.Pavidoss Introduction to Characterization of Nano Material and Thin Films(Publication JAZYM Publication)

Web Resources:

- 1. www.math.ox.ac.uk
- 2. www.math.upenn.edu.
- 3. Mathematical Physics-A Modern Intro to its Foundations-S.Hassani(Springer, 1999)WW.pdf

Course Outcomes:

On completion of the course the learner will be able

- CO 1: Understand the synthesis of nanomaterials and their application and the impact of nanomaterials on environment
- CO 2: Apply their learned knowledge to develop Nanomaterial's.
- CO 3: Choose appropriate synthesis technique to synthesize quantum nanostructures of desired size, shape and surface properties.
- CO 4: Appreciate enhanced sensitivity of nanomaterial based materials and their novel applications in industry.
- CO 5: Understand the synthesis of nanomaterials and their application and the impact of nanomaterials on environment

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	М	S	S	S	S	М	М	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

- S Strongly Correlating
- M Moderately Correlating
- W-Weakly Correlating
- N No Correlation

Semester-III /	CRYSTAL PHYSICS	Course Code: PGPE3		
Elective Course-III				
Instruction Hours: 5	Credits: 5	Exam Hours: 3		
Internal Marks -25	External Marks-75	Total Marks: 100		

Cognitive	K-1 Acquire/Remember						
Level	K-2 Understand						
	K-3 Apply						
	K-4 Analyze						
	K-5 Evaluate						
	K-6 Create						
Course	• To provide a qualitative idea on the fundamentals of growing cryst	als and					
Objectives	characterizing the grown samples.						
	• This paper will serve as an eye opener for students keen in research activities						
	particularly in experimental physics.						
	• To know the principles in the method involved in the growth of crystal. k	now the					
	principles the advantage and the disadvantages different thin film deposition						
	method.						
	• To understanding the theories involve in crystal growth nucleation proc	ess and					
	solution, melt and vapour growth techniques.						
	• To learn the importance of different thin films and coatings for a variety ind	ustrial					
	applications.						
UNIT	CONTENT	HOURS					
Ι	NUCLEATION	15					
	Introduction-kinds of nucleation-equilibrium stability and Meta stable state-						
	classical theory of nucleation-effect of soluble impurities on nucleation-						
	determination of solubility-methods of induction period measurements-						
	desupersaturation-steady state nucleation rate-nucleation parameters.						
II	SOLUTION AND GEL GROWTH TECHNIQUES	15					
	Low temperature solution growth-slow cooling methods-temperature gradient						

	method-criteria for optimizing solution growth parameters-basic apparatus for	
	solution growth. Gel growth-structure of silica gel and gelling mechanism-	
	nucleation control-merits of gel method-experimental methods- chemical	
	reaction method-chemical reduction method-complex de complex method-	
	solubility reduction method-sol gel method.	
III	HIGH TEMPERATURE AND OTHER TECHNIQUES OF GROWTH	15
111	Growth from malt Bridgman Gzoghralaki zona malting Varnavil	15
	Glowul IIom men-Bridgman, Czochraiski, zone meiting, verneun	
	techniques-physical vapor deposition-flux growth-chemical vapor deposition	
	chemical vapor transport-hydrothermal growth- epitaxial growth.	
IV	OPTICAL STUDIES	15
	Atomic absorption spectroscopy-UV-Visible-NIR spectroscopy-Experimental	
	set ups for Fourier Transform Infrared analysis, FT-Raman vibrational	
	spectroscopy and NMR Illustrations with selected crystals-Nonlinear optical	
	phenomenon (qualitative)-Kurtz powder SHG method-photoconductivity and	
	schematic set up for measurements-negative photoconductivity.	
V	CRYSTAL CHARACTERIZATION	15
	Thermal analysis-methods of thermal analysis-thermogravimetric analysis	
	(TGA)-Differential thermal analysis (DTA)-Differential Scanning	
	Calorimetry (DSC)-Mechanical studies-methods of hardness testing	
	(qualitative)-Vickers hardness testing-correlation of microhardness with other	
	properties-estimation of hardness number and work hardening coefficient (n)-	
	dielectric studies-dielectric constant and dielectric loss measurements.	

- 1. Brice J. C. (1986), 'Crystal Growth Process', John Wiley and Sons, New York.
- 2. Brice J.C. (1973), 'The growth of crystals from liquids', North Holland publishing company, Amsterdam.
- 3. Buckley H.E. (1951), 'Crystal Growth', John Wiley and Sons, New York.

- 4. Pamplin B.R. (1980), 'Crystal Growth', Pergman Press, London.
- Henisch H.K. (1988), 'Crystals in gels and Liesegang rings', Cambridge Univ. Press. USA

Reference Books:

- R.T. Sane and Jagdish K Ghadge 'Thermal Analysis Theory and applications' Quest Publications 1997
- V G Dmitriev, G.G. Gurzadyan, D.N. Nikigosyan; 'Handbook of Nonlinear optical crystals' Springer- Verlag 1991
- 3. Joshi V.N. (1990), 'Photoconductivity', Marcel Dekker, New York.
- Santhanaraghavan P. and Ramasamy P. Crystal growth Process and Methods, (2000) KRU Publications, Kumbakonam.

Course Outcome:

CO 1: Students will learn about the fundamentals of

CO 2: Nucleation mechanism and different kinds of nucleation.

CO 3: To learn about important crystal growth technique like Bridgeman, czochralski (pulling

method), solution growth and hydrothermal methods, physical and chemical vapor transport.

CO 4: To understand with various techniques involved in crystal growth.

CO 5: To determine various theoretical parameters

. Mapping of COs with POs & PSOs:

CO/PO			РО					PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	М	Μ	М	S	S	М	М	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	М	S	S	S	М	S	S	S

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

Semester-III /	COMMUNICATION PHYSICS	Course Code: PGPE4
Elective Course-IV		
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember	
Level	K-2 Understand	
	K-3 Apply	
	K-4 Analyze	
	K-5 Evaluate	
	K-6 Create	
Course	• Students will demonstrate an understanding of multiple theoretical period	erspectives
Objectives	and diverse intellectual traditions in communication.	
	• Students will demonstrate an understanding of importance of free express	ssion.
	• Students will competency in human relational interaction.	
	• To understanding of professional and ethical responsibility.	
	• An ability to communicate effectively.	
UNIT	CONTENT	HOURS
UNIT I	CONTENT WAVE PROPAGATION	HOURS
UNIT I	CONTENT WAVE PROPAGATION Fundamental of EM Waves - Free Space propagation –surface wave	HOURS
UNIT I	CONTENT WAVE PROPAGATION Fundamental of EM Waves - Free Space propagation –surface wave propagation –sky wave propagation space wave propagation-Troposphere	HOURS
UNIT I	CONTENT WAVE PROPAGATION Fundamental of EM Waves - Free Space propagation –surface wave propagation –sky wave propagation space wave propagation-Troposphere scatter propagation-structure of Atmosphere-Virtual height-MUF-Lowest	HOURS
UNIT	CONTENT WAVE PROPAGATION Fundamental of EM Waves - Free Space propagation –surface wave propagation –sky wave propagation space wave propagation-Troposphere scatter propagation-structure of Atmosphere-Virtual height-MUF-Lowest Usable Frequency-skip distance –Optimum length-duct propagation.	HOURS
UNIT	CONTENT WAVE PROPAGATION Fundamental of EM Waves - Free Space propagation –surface wave propagation –sky wave propagation space wave propagation-Troposphere scatter propagation-structure of Atmosphere-Virtual height-MUF-Lowest Usable Frequency-skip distance –Optimum length-duct propagation.	HOURS
UNIT I II	CONTENT WAVE PROPAGATION Fundamental of EM Waves - Free Space propagation –surface wave propagation –sky wave propagation space wave propagation-Troposphere scatter propagation-structure of Atmosphere-Virtual height-MUF-Lowest Usable Frequency-skip distance –Optimum length-duct propagation. AMPLITUDE MODULATION	HOURS 15 15
UNIT I II	CONTENTWAVE PROPAGATIONFundamental of EM Waves - Free Space propagation –surface wavepropagation –sky wave propagation space wave propagation-Tropospherescatter propagation-structure of Atmosphere-Virtual height-MUF-LowestUsable Frequency-skip distance –Optimum length-duct propagation.AMPLITUDE MODULATIONIntroduction - Principle - AM - DSBSC, SSB, VSB Techniques-Generation	HOURS 15 15
UNIT I II	CONTENT WAVE PROPAGATION Fundamental of EM Waves - Free Space propagation –surface wave propagation –sky wave propagation space wave propagation-Troposphere scatter propagation-structure of Atmosphere-Virtual height-MUF-Lowest Usable Frequency-skip distance –Optimum length-duct propagation. AMPLITUDE MODULATION Introduction - Principle - AM - DSBSC, SSB, VSB Techniques-Generation of Amplitude modulation Signals-Generation of AM, DSBSC, SSB,VSB-	HOURS 15 15
UNIT I II	CONTENT WAVE PROPAGATION Fundamental of EM Waves - Free Space propagation –surface wave propagation –sky wave propagation space wave propagation-Troposphere scatter propagation-structure of Atmosphere-Virtual height-MUF-Lowest Usable Frequency-skip distance –Optimum length-duct propagation. AMPLITUDE MODULATION Introduction - Principle - AM - DSBSC, SSB, VSB Techniques-Generation of Amplitude modulation Signals-Generation of AM, DSBSC, SSB,VSB- Introduction to PAM, PCM, PPM, PWM	HOURS 15 15

III	ANGLE MODULATION TECHNIQUES	15
	Introduction of communication system- Elements of Communication	
	System- Information-Transmitter, Channel, Receiver -Need for	
	modulation-Theory of angle modulation techniques (FM, PM) -	
	Comparison of Phase modulation and Frequency modulation-	
	Characteristics of PM and FM -Practical issues in FM (Noise and	
	Frequency Modulation)	
IV	ANTENNAS	15
	Electromagnetic Radiation- Elementary doublet-Current and Voltage	
	Distribution-Resonant Antennas, Radiation Pattern and length contraction-	
	Antenna Resonance- Band width, Beam width and Polarization – Grounded	
	and ungrounded Antennas-Effect of Height-Feed Point-impedance	
	Matching.	
V	INFORMATION THEORY, CODING and DATA	15
	COMMUNICATION.	
	Introduction, coding-digital code- Error Detection and Correction-	
	Characteristic of data Communication System, Transmission System -	
	Network and control consideration (Network organization, network	
	Protocols)	

1. Kennedy and Davis, Electronic Communication System, Tata McGraw Hill,8th edition

Web-Resources:

- 1. www.math.ox.ac.uk
- 2. www.math.upenn.edu.
- 3. Mathematical Physics-A Modern Intro to its Foundations-S.Hassani(Springer,1999)WW.pdf

Course Outcome:

CO 1: Demonstrate critical and innovative thinking

CO 2: Display competence in oral, written and visual communication.

CO 3: Show an understanding of opportunities in the field of communication.

CO 4: Students will demonstrate an understanding of the impact of physics and science on society

CO 5: Identify the applications in communications.

Mapping of COs with POs & PSOs:

CO/PO			РО					PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	М	S	S	S	S	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	М	М	S	S	S	S	S	S	S
CO4	S	S	S	М	М	S	S	S	S	S
CO5	S	S	S	S	Μ	S	S	S	S	S

- S Strongly Correlating
- M Moderately Correlating
- W Weakly Correlating
- N No Correlation

Semester-III /	LASER AND FIBER OPTICS	Course Code: PGPE4
Elective Course-IV		
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember							
Level	K-2. Understand							
Level	K-3 Apply							
	K-4 Analyze							
	K-5 Evaluate							
	K-6 Create							
Course	Learn the underlying physics of Lasers and laser systems by combining the							
Objectives	knowledge of gain media together with the aspects of design, configuration and							
	operation of lasers.							
	• Fundamental principles of stimulated amission and how to convert it into asherent							
	• Fundamental principles of sumulated emission and now to convert it into	• Fundamental principles of stimulated emission and how to convert it into coherent						
	light emission.							
	• The manipulation of light i. e. mode selection, continuous and pulsed g	eneration,						
	spectral narrowing etc.							
	• Applications of various lasers in various fields including scientific researc	h to						
	common use.							
UNIT	CONTENT	HOURS						
UNIT I	CONTENT LASER AND FIBER OPTICS	HOURS						
UNIT I	CONTENT LASER AND FIBER OPTICS Lasers: Basic concepts of stimulated emission-Population inversion and	HOURS 15						
UNIT	CONTENT LASER AND FIBER OPTICS Lasers: Basic concepts of stimulated emission-Population inversion and metastable state-Ruby laser and He –Ne laser production –applications.	HOURS 15						
UNIT	CONTENT LASER AND FIBER OPTICS Lasers: Basic concepts of stimulated emission-Population inversion and metastable state-Ruby laser and He –Ne laser production –applications. Fiber optics : Introduction –Optical fiber – total –Critical angle - Principle	HOURS 15						
UNIT	CONTENT LASER AND FIBER OPTICS Lasers: Basic concepts of stimulated emission-Population inversion and metastable state-Ruby laser and He –Ne laser production –applications. Fiber optics : Introduction –Optical fiber – total –Critical angle - Principle of propagation of light through optical fibers – Type of optical fibers - Fiber	HOURS 15						
UNIT	CONTENT LASER AND FIBER OPTICS Lasers: Basic concepts of stimulated emission-Population inversion and metastable state-Ruby laser and He –Ne laser production –applications. Fiber optics : Introduction –Optical fiber – total –Critical angle - Principle of propagation of light through optical fibers – Type of optical fibers - Fiber optics communication system –Fiber optics sensors.	HOURS 15						
UNIT I	CONTENT LASER AND FIBER OPTICS Lasers: Basic concepts of stimulated emission-Population inversion and metastable state-Ruby laser and He –Ne laser production –applications. Fiber optics : Introduction –Optical fiber – total –Critical angle - Principle of propagation of light through optical fibers – Type of optical fibers - Fiber optics communication system –Fiber optics sensors. Laser Resonance and cavity modes:	HOURS 15 15						
UNIT I II	CONTENT LASER AND FIBER OPTICS Lasers: Basic concepts of stimulated emission-Population inversion and metastable state-Ruby laser and He –Ne laser production –applications. Fiber optics : Introduction –Optical fiber – total –Critical angle - Principle of propagation of light through optical fibers – Type of optical fibers - Fiber optics communication system –Fiber optics sensors. Laser Resonance and cavity modes: ABCD law for Gaussian Beams; Gaussian beams in stable resonators;	HOURS 15 15						
UNIT I II	CONTENT LASER AND FIBER OPTICS Lasers: Basic concepts of stimulated emission-Population inversion and metastable state-Ruby laser and He –Ne laser production –applications. Fiber optics : Introduction –Optical fiber – total –Critical angle - Principle of propagation of light through optical fibers – Type of optical fibers - Fiber optics communication system –Fiber optics sensors. Laser Resonance and cavity modes: ABCD law for Gaussian Beams; Gaussian beams in stable resonators; ABCD law applied to cavities: Mode volume Resonance: On factor &	HOURS 15 15						
UNIT I	CONTENT LASER AND FIBER OPTICS Lasers: Basic concepts of stimulated emission-Population inversion and metastable state-Ruby laser and He –Ne laser production –applications. Fiber optics : Introduction –Optical fiber – total –Critical angle - Principle of propagation of light through optical fibers – Type of optical fibers - Fiber optics communication system –Fiber optics sensors. Laser Resonance and cavity modes: ABCD law for Gaussian Beams; Gaussian beams in stable resonators; ABCD law applied to cavities; Mode volume, Resonance; Q- factor &	HOURS 15 15						

	Laser oscillation: Threshold condition; Oscillation frequency, Oscillation and amplification in a homogeneously broadened transition; Gain saturation; Oscillations in an inhomogeneous system; Hole burning & Lamb dip.	
III	FIBER OPTICAL SOURCES AND COUPLERS LED	15
	LED materials – fiber LED coupling – LASER – spatial emission pattern of	
	LASER - modulation response of LASER - single frequency LASER -	
	light emitting transistor. Optical Couplers: Types of optical couplers - star	
	couplers – T couplers – source to fiber coupling efficiency – opto-couplers	
	and applications.	
IV	ANALOG AND DIGITAL TRANSMISSION SYSTEM	15
	Overview of analog links – multichannel transmission techniques –	
	multichannel amplitude modulation – multichannel frequency modulation –	
	digital transmission - line coding – NRZ codes RZ codes – Block codes	
V	COHERENT OPTICAL FIBER COMMUNICATION SYSTEM	15
V	COHERENT OPTICAL FIBER COMMUNICATION SYSTEM Fundamental concepts – homodyne detection – heterodyne detection –	15
V	COHERENT OPTICAL FIBER COMMUNICATION SYSTEM Fundamental concepts – homodyne detection – heterodyne detection – modulation techniques – direct detection OOK – OOK homodyne detection	15
V	COHERENT OPTICAL FIBER COMMUNICATION SYSTEM Fundamental concepts – homodyne detection – heterodyne detection – modulation techniques – direct detection OOK – OOK homodyne detection – PSK homodyne detection – heterodyne detection schemes – polarization	15
V	COHERENT OPTICAL FIBER COMMUNICATION SYSTEM Fundamental concepts – homodyne detection – heterodyne detection – modulation techniques – direct detection OOK – OOK homodyne detection – PSK homodyne detection – heterodyne detection schemes – polarization control requirements.	15

- 1. Optical Fiber Communication Gerd Keiser McGraw-Hill 2nd Edition
- 2. Optical Communication System John Gowar Prentice Hall of India -
- 3. 2nd Edition
- 4. Optical fiber and fiber optic communication system Subirkumarsarkar-
- 5. S.Chand 4th Edition (2010).

Reference Books:

- 1. Svelto O.: Principles of Lasers, (V Edition), Springer 2010.
- 2. William Silfvast, Laser Fundamentals, Cambridge press, 2004.
- 3. Verdeyen, J.T.: Laser Electronics, (III Edition) Prentice Hall, 1995.
- 4. Govind P. Agarwal Fiber Optic Communication System John Wiley & Sons (2002)

Web-Resources:

- 1. https://www.ikbooks.com/home/samplechapter?filename=190_Sample-Chapter.pdf
- 2. <u>https://www.ikbooks.com/home/samplechapter?filename=190_Sample-Chapter.pdf</u>

Course Outcome:

CO 1: Understand the principle and structure of optical fibers.

CO 2: Understand the working principle of fiber optical sources and couplers and apply it in the optical communication systems.

CO 3: Apply the fundamental principles of optics and light wave to design optical fiber communication systems.

CO 4: Understand different analog and digital transmission systems.

CO 5: Understand and apply the concepts of coherent optical modulation and detection techniques.

Mapping of COs with POs & PSOs:

CO/PO			РО					PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S – Strongly Correlating

 $M-Moderately\ Correlating$

W – Weakly Correlating

Semester-IV/	NUCLEAR AND PARTICLE PHYSICS	Course Code: PGPL
Core Course IX		
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember							
Level	K-2 Understand							
	K-3 Apply							
	K-4 Analyze							
	K-5 Evaluate							
	K-6 Create							
Course	• Introduce students to the fundamental principles and concepts governi	ng nuclear						
Objectives	and particle							
	• Physics							
	• Observational aspects of nuclei, including their binding energy, size, spin	and parity						
	• Nuclear models: liquid drop and shell models.							
	• The semi-empirical mass formula and deductions from it concerning	ng nuclear						
	stability.							
	• The classification of fundamental particles and their interactions accord	ding to the						
	Standard							
	• Model quark structure of mesons and baryons.							
UNIT	CONTENT	HOURS						
Ι	Nuclear Properties	18						
	Nuclear energy levels - Nuclear angular momentum, parity, isospin -							
	Nuclear magnetic dipole moment - Nuclear electric quadropole moment -							
	Ground state of deuteron - Magnetic dipole moment of deuteron - Proton-							
	neutron scattering at low energies - Scattering length, phase shift- Nature							
	and properties of nuclear forces - Spin dependence - Charge symmetry -							
	Charge independence - Repulsion at short distances - Exchange forces -							
	Meson theory.							

II	Radioactive Decays	18
	Alpha emission - Geiger-Nuttal law - Gamow theory - Neutrino	
	$hypothesis\ -Fermi\ theory\ of\ beta\ decay-Selection\ rules-No\ conservation$	
	of parity -Gamma emission - Selection rules -Nuclear isomerism	
	Gamma ray spectroscopy – Mossbauer effect Interaction of charged	
	particles and X-rays with matter – Types and basic principles of particle	
	detectors.	
III	Nuclear Reactions and Nuclear	18
	$Reciprocity\ theorem-Breit-Wigner\ formula-Resonance\ theory-Liquid$	
	drop model Shell model Evidences for shell model Magic numbers	
	Harmonic oscillator - Square-well potential - Spin-orbit interaction -	
	Collective model of a nucleus.	
IV	Fission and Fusion Reactors	18
	Characteristics of fission - Mass distribution of fragments - Radioactive	
	decayprocesses - Fission cross-section - Energy in fission - Bohr-	
	Wheeler's theory of nuclear fission - Fission reactors - Thermal reactors -	
	Homogeneous reactors –Heterogen.	
Unit V	Particle Physics	18
	Nucleons, leptons, mesons, baryons, hyperonseous reactors - Basic fusion	
	processes Characteristics of fusion -Solar fusion - Controlled fusion	
	reactors., hadrons, strange particles -	
	Classification of fundamental forces and elementary particles - Basic	
	conservation laws - Additional conservation laws: Baryonic, leptonic,	
	strangeness and isospin charges/quantum numbers - Gell-mann-	
	Nishijima23formula - Invariance under charge conjugation (C), parity (P)	
	and time reversal (T) – CPT theorem Parity non conservation in weak	
	interactions – CP violation – Eight-fold way and super multiplets – $SU(3)$	
	symmetry and quark model.	
VI	Nuclear Diagnostics for Inertial Confinement Fusion	Field Visit

Nuclear Threat Reduction and Global Security	
• Forensic analysis of a nuclear explosion	
Nuclear Geophysics	
• Nuclear Logging in the Oil, Gas, Coal, and Mineral Industries.	
• Geo-neutrinos and the Earth's Internal Heat	
Nuclear Medicine	
Nuclear Imaging	
 Geo-neutrinos and the Earth's Internal Heat Nuclear Medicine Nuclear Imaging 	

- 1. K. S. Krane, Introductory of Nuclear Physics (John-Wiley, New York, 1987).
- 2. S. B. Patel, Nuclear Physics: An Introduction (New Age, New Delhi, 2009).
- D. C. Cheng and G. K. O'Neill, *Elementary Particle Physics: An Introduction* (Addison-Wesley, New York, 1979).
- 4. D.C. Tayal, Nuclear Physics (Himalaya Pub. House, New Delhi, 2011).

Reference Books:

- 1. R.C. Sharma, Nuclear Physics (K. Nath and Co, Meerut, 2004).
- 2. B. L. Cohen, Concepts of Nuclear Physics (Tata McGraw Hill, New Delhi, 1988).

Web-Resources:

- 1. www.math.ox.ac.uk
- 2. www.math.upenn.edu
- 3. Mathematical Physics-A Modern Intro to its Foundations S.Hassani(Springer,1999)WW.pdf

Course Outcome:

CO 1: Determine nuclear properties such as binding energy, spin and parity in the framework of the liquid drop model and the shell model of the nucleus.

CO 2: Use the liquid drop model and the law of radioactive decay to describe alpha-decay, beta-decay, fission and fusion, predict decay reactions and calculate the energy release in nuclear decays

CO 3: It will teach the students about the spin parity concept & magic no. Related to shell.

CO 4: About the scattering process how it will occur.

CO 5: Explain the experimental evidence for quarks, gluons, quark confinement, asymptotic freedom, sea quarks, the running coupling constant and colour charge

Mapping of COs with POs & PSOs:

CO/PO	РО				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	М	М	S	S	S	М	S
CO2	S	S	S	М	М	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	М	М	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

Semester-IV /	ADVANCED PHYSICS	Course Code: PGPM
Core CourseX		
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember	
Level	K-2 Understand	
	K-3 Apply	
	K-4 Analyze	
	K-5 Evaluate	
	K-6 Create	
Course	• To learn the basics and the advanced applications of physics in the	fields of
Objectives	Astrophysics, Biomedical and wireless communication.	
	• Understanding basic principles and phenomena in the area of medical d	iagnostic
	instrumentations.	
	• Introduce communication systems for space vehicles.	
	• To introduce the concepts and techniques associated with wireless comm	unication
	system.	
	• To familiarize with state of art standards used in wireless cellular systems.	
UNIT	CONTENT	HOURS
I	Astrophysics and Radio Astronomy	18
I	Astrophysics and Radio Astronomy Astrophysics: Physical properties of stars - Life cycle of a star -	18
I	Astrophysics and Radio Astronomy Astrophysics: Physical properties of stars - Life cycle of a star - Endproducts of stellar evolution –Structure of milky way - Expanding	18
I	Astrophysics and Radio Astronomy Astrophysics: Physical properties of stars - Life cycle of a star - Endproducts of stellar evolution –Structure of milky way - Expanding universe -Future prospects.	18
I	Astrophysics and Radio Astronomy Astrophysics: Physical properties of stars - Life cycle of a star – Endproducts of stellar evolution –Structure of milky way - Expanding universe -Future prospects. Radio Astronomy (RA): Radio telescopes - Synchrotron radiation –	18
I	Astrophysics and Radio Astronomy Astrophysics: Physical properties of stars - Life cycle of a star – Endproducts of stellar evolution –Structure of milky way - Expanding universe -Future prospects. Radio Astronomy (RA): Radio telescopes - Synchrotron radiation – Spectrallines in RA - Major discoveries in RA - RA in India - Hot big bang	18
Ι	Astrophysics and Radio Astronomy Astrophysics: Physical properties of stars - Life cycle of a star – Endproducts of stellar evolution –Structure of milky way - Expanding universe -Future prospects. Radio Astronomy (RA): Radio telescopes - Synchrotron radiation – Spectrallines in RA - Major discoveries in RA - RA in India - Hot big bang cosmology.	18
I	Astrophysics and Radio Astronomy Astrophysics: Physical properties of stars - Life cycle of a star – Endproducts of stellar evolution –Structure of milky way - Expanding universe -Future prospects. Radio Astronomy (RA): Radio telescopes - Synchrotron radiation – Spectrallines in RA - Major discoveries in RA - RA in India - Hot big bang cosmology. India's Space Programme	18

	programme - The INSAT system - Broadcasting - Telecommunication - Meteorology - Indian remote sensing programme – Geo informatics (basic	
	idea only) - The launching programme.	
III	India's Space Programme	18
	Overview - Methodological issues in cost beneficial analysis of space	
	programme - The INSAT system - Broadcasting - Telecommunication -	
	Meteorology - Indian remote sensing programme – Geo informatics (basic idea only) - The launching programme.	
IV	Biomedical Instruments	18
	Ear and hearing Aids: Basic measurements of ear function - Air and bone	
	conduction -Masking -Middle ear impedance audiometry - Oto-acoustic	
	emission - Types of hearing aids and Cochlea rim plants - Sensory	
	substitution aids - Electrophysiology: Source of biological potentials - Signal	
	size and electrodes - Functions - Features of ECG, EEG and EMG. Cardiac	
	and blood related devices: Pacemakers -Electromagnetic compatibility -	
	Defibrillators -Artificial heart valves - Cardiopulmonary bypass -	
	Hemodialysis.	
Unit V	Wireless Communication Technology-I	18
	Cellular Radio: IMTS, AMPS control system - Security and privacy -	
	Cellular telephone specifications and operations - Cell site equipment - Fax	
	and data communication using cellular phones and CDPD – Digital cellular	
	systems Personal Communication Systems (PCS): Differences between CS	
	and PCS, IS-136 TDMA PCS, GSM, IS-95 CDMA PCS - Comparison of	
	modulation schemes -Data communication with PCS.	
Unit VI	Radio Astronomy	Field
	RADAR	Visit
	Cellular Radio	
	Reconnaissance & Communications	
	Data communication	

- R. Blake, Wireless Communication Technology (DELMAR, New Delhi, 2001). 2.. A.W. Joshi, Horizons of Physics (Wiley Eastern Ltd, New Delhi, 2000).
- 2. R.D. Begamure (Ed.), Scientific Truths About Our, niverse: Know Your Universe: Part I & II (Pune, 2002).

Reference Books:

- 1. www.math.ox.ac.uk
- 2. www.math.upenn.edu

Course Outcome:

CO 1: Able to use radio astronomical data to measure physical properties of astronomical targets.

CO 2: Identify and solve basic communication problems, analyse transmitter and receivers.

CO 3: Demonstrate measuring of basic medical parameters

CO 4: Analyse the radio channel characteristics and the cellular principles

CO 5: Ability to analyse improved data services in cellular communication.

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	S	М	М	S	S	S	S	S
CO2	S	М	S	S	S	S	S	S	S	S
CO3	S	S	М	М	М	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating
Semester-IV /	PHYSICS PRACTICAL IV (ELECTRONICS)	Course Code: PGPNY
Core Practical - IV		
Instruction Hours: 7	Credits: 4	Exam Hours: 3
Internal Marks -40	External Marks-60	Total Marks: 100

Cognitivo	K-1 Acquire/Pemember
Lovel	K-1 Acquire/Kemember
Level	
	K-3 Apply
	K-4 Analyze
	K-5 Evaluate
	K-6 Create
Course	• To gain practical knowledge by applying the experimental methods to correlate with
Objectives	the physics theory.
	• To learn the usage of electrical and electronic systems for various measurements
	• To learn the usage of electrical and electronic systems for various measurements.
	• Apply the analytical techniques and graphical analysis to the experimental data.
	• To develop intellectual communication skills and discuss the basic principles of
	scientific concepts in a group.
	• Practice different types of wiring and instruments connections keeping in mind
	technical, Economical, safety issues.
	• Verification of characteristics and applications of electronic components and
	devices.
	Any FIFTEEN experiments
1.	Characteristics of Strain gauge
2.	Characteristics of Load cell
3.	Characteristics of Torque transducer
4.	Digital to analog converter R-2R and weighted method
5.	Digital comparator using XOR and NAND gates
6.	Four bit binary up and down counter using IC 7473

7.	BCD to 7 segment display
8.	Study of RAM
9.	Study of A/D converter Counter ramp type method
10.	Study of Arithmetic Logic Unit (ALU) IC 74181
11.	Pulse code modulation and demodulation
12.	Voltage controlled oscillator using IC 555
13.	Design of AC/DC voltage regulator using SCR
14.	Characteristics of Gunn diode oscillator
15.	Up/down counter using mod 10

Course Outcome:

CO 1: Understand the behaviour of electronic components and perform analysis and design of bias circuits for diodes, transistors etc.

CO 2: Set up testing strategies and select proper instruments to evaluate performance characteristics of electronic circuit.

CO 3: Choosing testing and experimental procedures on different types of electronic circuit and analyse their operation different operating conditions.

CO 4: Use special function ICs for different applications.

CO 5: Develop logic circuits for various applications in real life and Design and develop data convertors.

CO/PO	РО							PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

N – No Correlation

Semester-III / Elective Course-V	ADVANCED EXPERIMENTAL TECHNIQUES	Course Code: PGPE5
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember	
Level	K-2 Understand	
	K-3 Apply	
	K-4 Analyze	
	K-5 Evaluate	
	K-6 Create	
Course	• To make the students understand the principles.	
Objectives	• To involve in measuring devices, error measurements, the stand	lards of
	measurements.	
	• To understand performance characteristics of an instrumentation	system,
	transducers, and vibration sensing devices.	
	• To apply the techniques.	
UNIT	CONTENT	HOURS
Ι	X ray diffraction methods	15
Ι	X ray diffraction methods Sterographic projection - wulff net – measurement of angle between poles-	15
I	X ray diffraction methods Sterographic projection - wulff net – measurement of angle between poles- determination of Miller indices of an unknown pole. X- ray diffraction under	15
I	X ray diffraction methods Sterographic projection - wulff net – measurement of angle between poles- determination of Miller indices of an unknown pole. X- ray diffraction under non ideal conditions – Scherrer formula for estimation of particlesize. Laue	15
Ι	X ray diffraction methods Sterographic projection - wulff net – measurement of angle between poles- determination of Miller indices of an unknown pole. X- ray diffraction under non ideal conditions – Scherrer formula for estimation of particlesize. Laue method, rotating crystal method – powder method-Scherrer camera.	15
Г	X ray diffraction methods Sterographic projection - wulff net – measurement of angle between poles- determination of Miller indices of an unknown pole. X- ray diffraction under non ideal conditions – Scherrer formula for estimation of particlesize. Laue method, rotating crystal method – powder method-Scherrer camera. Spectroscopic techniques	15 15
П	X ray diffraction methods Sterographic projection - wulff net – measurement of angle between poles- determination of Miller indices of an unknown pole. X- ray diffraction under non ideal conditions – Scherrer formula for estimation ofparticlesize. Laue method, rotating crystal method – powder method-Scherrer camera. Spectroscopic techniques Mass spectroscopy and Xray emission spectroscopy (principle and	15 15
Ι	X ray diffraction methods Sterographic projection - wulff net – measurement of angle between poles- determination of Miller indices of an unknown pole. X- ray diffraction under non ideal conditions – Scherrer formula for estimation of particlesize. Laue method, rotating crystal method – powder method-Scherrer camera. Spectroscopic techniques Mass spectroscopy and Xray emission spectroscopy (principle and limitations), Quadrupole mass spectrometer- X ray photo electron	15 15
Ι	X ray diffraction methods Sterographic projection - wulff net – measurement of angle between poles- determination of Miller indices of an unknown pole. X- ray diffraction under non ideal conditions – Scherrer formula for estimation ofparticlesize. Laue method, rotating crystal method – powder method-Scherrer camera. Spectroscopic techniques Mass spectroscopy and Xray emission spectroscopy (principle and limitations), Quadrupole mass spectrometer- X ray photo electron spectroscopy (XPS), Auger electron spectroscopy (AES) – laser Raman	15 15

III	Electron beam techniques Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Ruther ford back scattering spectrometry (RBS), Ion beam techniques, Field ion microscopy (IM)	15
IV	Optical techniques Use of polarized light in the study of transparent materials – polarized light microscopy – coloscopy –compensator techniques–Babinet– Soleil compensator - Berek compensator.	15
V	Thermal analytical techniques Differential thermal analysis – Instrumentation – differential scanning calorimetry – thermo gravimetric analysis –Instrumentation.	15

Text Books:

- Cullity BD, Elements of X ray diffraction Addison Wesley PublishingCo, 1967,3rd Edition.
- Dieter K Schroder, Semiconductor material and Characterization John Wiley and sons inc, 1990, 2nd edition).
- 3. PruttonM, Surface Physics, Clarendon Press, 1975, 2nd edition.
- 4. M.Woolfson,An IntroductiontoXrayCrystallography,CambridgeCambridge,1970,2nd edition.

Reference Books:

- Cullity BD, Elements of X ray diffraction Addison Wesley PublishingCo, 1967,3rd Edition.
- Dieter K Schroder, Semiconductor material and Characterization John Wiley and sons inc, 1990, 2nd edition).
- 3. PruttonM, Surface Physics, Clarendon Press, 1975, 2nd edition.
- M.Woolfson, An IntroductiontoXrayCrystallography, CambridgeCambridge, 1970, 2nd edition.

Web-Resources:

- 1. <u>https://www.amazon.in/Advanced-Experimental-Techniques-Physics-</u> <u>Prakashan/dp/B07YCM821T</u>
- 2. <u>https://eng.ua.edu/tag/advanced-experimental-techniques/</u>

Course Outcome:

CO 1: The students are expected to learn the art and science of carrying out experimental research.

CO 2: At the end of the course a student should be able to design and carry out an experiment on his/her own.

CO 3: This is an important skill which anybody wanting to do experimental research is expected to possess.

CO 4: To learn the art and science of carrying out experimental research

CO 5: Techniques of curve fitting and parameter estimation

CO/PO	PO				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	М	М	S	S	S	S	S
CO3	S	S	М	S	S	S	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	S	S	М	S	М	S	S	S	S	S

Mapping of COs with POs & PSOs:

S – Strongly Correlating

M – Moderately Correlating

W-Weakly Correlating

N – No Correlation

Semester-IV /	BASICS OF COMPUTATIONAL	Course Code:- PGPE5
Elective Course V	NANOELECTRONICS	
Instruction Hours: 5	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember								
Level	K-2 Understand								
	K-3 Apply								
	K-4 Analyze								
	K-5 Evaluate								
	-6 Create								
Course	The purpose of this course is to introduce the physical concepts underlying the								
Objectives	phenomena in the mesoscopic systems.								
	• The aim of the course is, how to model and solve nanojunctions.								
	• In this course, students will learn some new advanced topics such as:	quantization							
	of electrical conductance, Coulomb Blockade, quantum capacitance and	d etc.							
UNIT	CONTENT	HOURS							
Ι	Two Key Concepts, Why Electrons Flow, Conductance Formula,	15							
	Ballistic Conductance, Diffusive Conductance, Connecting Ballistic to								
	Diffusive Drude Formula Characteristic Length Scale Transport								
	Diffusive, Didde Formula, Characteristic Lengui Seate, Hansport								
	Regime.								
II	Density of States, Number of Modes, Electron Density, Conductivity vs.	15							
	Electron Density, Quantum Capacitance, Nanotransistors, What and								
	Where is the Voltage, Spin Voltage, Current from QuasiFermi Levels,								
	Electrostatio Detentiol								
III	What a Probe Measures, Boltzmann Equation, Semiclassical Model,	15							
	Quantum Model, Landauer Formulas, NEGF Equations, Self-Energy,								
1	Surface Green's Function Current Operator Scattering Theory I								
	Surface Green's Function, Current Operator, Scattering Theory,								
	Surface Green's Function, Current Operator, Scattering Theory, Transmission, Rate Equations.								

IV	Spin Transport, Vectors and Spinors, Spin-Orbit Coupling, Spin Hamiltonian, Spin Density/Current, Seebeck Coefficient, heat Current, Second Law, Entropy, Fuel Value of Information	15
V	Application of Nanomaterials Molecular Electronics and Nanoelectronics – Nanobots- Biological Applications – Quantum Devices – Nanomechanics - Carbon Nanotube – Photonics- Nano structures as single electron transistor –principle and design.	15

Text Books:

- Lessons from Nanoelectronics: A New Perspective on Transport: Volume 1 & 2 by Supriyo Datta (World Scientific) G:
- 2. Theory of Quantum Transport at Nanoscale: An Introduction by Dmitry A Ryndyk (Springer) H:
- Quantum Transport: Introduction to Nanoscience by Yuli V. Nazarov and Yaroslav M. Blanter (CAMBRIDGE)

Reference Books:

- S.P. Gaponenko, Optical Properties of semiconductor nanocrystals, Cambridge University Press, 1980.
- W.Gaddand, D.Brenner, S.Lysherski and G.J.Infrate(Eds.), Handbook of NanoScience, Engg. and Technology, CRC Press, 2002. \

Web-Resources:

- 1. https://www.ecc.itu.edu.tr/index.php/ELE_523E
- 2. <u>https://www.nature.com/subjects/computational-nanotechnology</u>

Course Outcome:

CO 1: Discuss the types of nanotechnology, molecular technology and the preparation of nano materials.

CO 2: Explains the fundamental of the devices such as logic devices, field effect devices, and spintronics.

CO 3: Describe the concepts of silicon MOSFET and Quantum Transport Devices.

CO 4: Summarize the types, synthesis, interconnects and applications of carbon nano tubes.

CO 5: Explain the concepts, functions, fabrications and applications of molecular electronics

CO/PO	РО					PO PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	М	S	S	М	S	S
CO2	S	S	М	М	S	S	S	S	S	S
CO3	S	S	М	М	S	S	S	М	S	S
CO4	S	S	М	М	S	S	S	S	S	S
CO5	S	S	S	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S – Strongly Correlating

M – Moderately Correlating

W – Weakly Correlating

N – No Correlation